Documentation Verification Report

Equivalence

📁 Source: Mathlib/CategoryTheory/Equivalence.lean

Statistics

MetricCount
Definitionsadjointifyη, asNatTrans, changeFunctor, changeInverse, congrLeft, congrRight, congrRightFunctor, counit, counitInv, counitIso, fullyFaithfulFunctor, fullyFaithfulInverse, funInvIdAssoc, functor, functorFunctor, instCategory, instInhabited, instPowInt, invFunIdAssoc, inverse, mk, mkHom, mkIso, pow, powNat, refl, trans, unit, unitInv, unitIso, IsEquivalence, asEquivalence, inv, compInverseIso, inverseCompIso, isoCompInverse, isoFunctorOfIsoInverse, isoInverseComp, isoInverseOfIsoFunctor, fullSubcategoryCongr, «term_≌_»
41
TheoremsEquivalence_mk'_counit, Equivalence_mk'_counitInv, Equivalence_mk'_unit, Equivalence_mk'_unitInv, adjointify_η_ε, adjointify_η_ε_assoc, asNatTrans_mkHom, cancel_counitInv_right, cancel_counitInv_right_assoc, cancel_counitInv_right_assoc', cancel_counit_right, cancel_unitInv_right, cancel_unit_right, cancel_unit_right_assoc, cancel_unit_right_assoc', changeFunctor_counitIso_hom_app, changeFunctor_counitIso_inv_app, changeFunctor_functor, changeFunctor_inverse, changeFunctor_refl, changeFunctor_trans, changeFunctor_unitIso_hom_app, changeFunctor_unitIso_inv_app, changeInverse_counitIso_hom_app, changeInverse_counitIso_inv_app, changeInverse_functor, changeInverse_inverse, changeInverse_unitIso_hom_app, changeInverse_unitIso_inv_app, comp_asNatTrans, comp_asNatTrans_assoc, congrLeft_counitIso_hom_app, congrLeft_counitIso_inv_app, congrLeft_functor, congrLeft_inverse, congrLeft_unitIso_hom_app, congrLeft_unitIso_inv_app, congrRightFunctor_map, congrRightFunctor_obj, congrRight_counitIso_hom_app, congrRight_counitIso_inv_app, congrRight_functor, congrRight_inverse, congrRight_unitIso_hom_app, congrRight_unitIso_inv_app, counitInv_app_functor, counitInv_functor_comp, counitInv_functor_comp_assoc, counitInv_naturality, counitInv_naturality_assoc, counit_app_functor, counit_naturality, counit_naturality_assoc, essSurjInducedFunctor, essSurj_functor, essSurj_inverse, ext, ext_iff, faithful_functor, faithful_inverse, full_functor, full_inverse, fullyFaithfulToEssImage, funInvIdAssoc_hom_app, funInvIdAssoc_inv_app, fun_inv_map, fun_inv_map_assoc, functorFunctor_map, functorFunctor_obj, functor_unitIso_comp, functor_unit_comp, functor_unit_comp_assoc, hom_ext, hom_ext_iff, id_asNatTrans, inducedFunctorOfEquiv, invFunIdAssoc_hom_app, invFunIdAssoc_inv_app, inv_fun_map, inv_fun_map_assoc, inverse_counitInv_comp, inverse_counitInv_comp_assoc, isEquivalence_functor, isEquivalence_inverse, mkHom_asNatTrans, mkHom_comp, mkHom_comp_assoc, mkHom_id_functor, mkHom_id_inverse, mkIso_hom, mkIso_inv, pow_neg_one, pow_one, pow_zero, refl_counitIso, refl_functor, refl_inverse, refl_unitIso, symm_counit, symm_counitIso, symm_functor, symm_inverse, symm_unit, symm_unitIso, trans_counitIso, trans_functor, trans_inverse, trans_unitIso, unitInv_app_inverse, unitInv_naturality, unitInv_naturality_assoc, unit_app_inverse, unit_inverse_comp, unit_inverse_comp_assoc, unit_naturality, unit_naturality_assoc, essSurj, faithful, full, mk', asEquivalence_functor, fun_inv_map, instIsEquivalenceObjWhiskeringLeft, instIsEquivalenceObjWhiskeringRight, inv_fun_map, isEquivalence_iff_of_iso, isEquivalence_inv, isEquivalence_of_comp_left, isEquivalence_of_comp_right, isEquivalence_of_iso, isEquivalence_refl, isEquivalence_trans, compInverseIso_hom_app, compInverseIso_inv_app, inverseCompIso_hom_app, inverseCompIso_inv_app, isoCompInverse_hom_app, isoCompInverse_inv_app, isoFunctorOfIsoInverse_hom_app, isoFunctorOfIsoInverse_inv_app, isoFunctorOfIsoInverse_isoInverseOfIsoFunctor, isoInverseComp_hom_app, isoInverseComp_inv_app, isoInverseOfIsoFunctor_hom_app, isoInverseOfIsoFunctor_inv_app, isoInverseOfIsoFunctor_isoFunctorOfIsoInverse, fullSubcategoryCongr_counitIso, fullSubcategoryCongr_functor, fullSubcategoryCongr_inverse, fullSubcategoryCongr_unitIso
150
Total191

CategoryTheory

Definitions

NameCategoryTheorems
«term_≌_» 📖CompOp

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
adjointifyη 📖CompOp
2 mathmath: adjointify_η_ε_assoc, adjointify_η_ε
asNatTrans 📖CompOp
12 mathmath: comp_asNatTrans, inverseFunctor_map, symmEquivFunctor_map, congrLeftFunctor_map, comp_asNatTrans_assoc, mkHom_asNatTrans, id_asNatTrans, functorFunctor_map, hom_ext_iff, asNatTrans_mkHom, congrRightFunctor_map, symmEquivInverse_map_app
changeFunctor 📖CompOp
8 mathmath: changeFunctor_unitIso_hom_app, changeFunctor_trans, changeFunctor_counitIso_hom_app, changeFunctor_refl, changeFunctor_unitIso_inv_app, changeFunctor_functor, changeFunctor_inverse, changeFunctor_counitIso_inv_app
changeInverse 📖CompOp
6 mathmath: changeInverse_functor, changeInverse_inverse, changeInverse_counitIso_inv_app, changeInverse_unitIso_inv_app, changeInverse_counitIso_hom_app, changeInverse_unitIso_hom_app
congrLeft 📖CompOp
37 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, congrLeft_counitIso_inv_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, congrLeft_functor, CategoryTheory.instIsMonoidalFunctorCongrLeft, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, congrLeftFunctor_obj, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, congrLeft_unitIso_inv_app, congrLeft_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, congrLeftFunctor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, congrLeft_counitIso_hom_app, congrLeft_inverse, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app
congrRight 📖CompOp
12 mathmath: congrRight_functor, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_inv_app_app, congrRightFunctor_obj, congrRight_inverse, congrRight_unitIso_hom_app, CategoryTheory.prod.functorProdToProdFunctorAssociator_inv_app, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_hom_app_app, congrRightFunctor_map, congrRight_counitIso_inv_app, CategoryTheory.prod.functorProdToProdFunctorAssociator_hom_app, congrRight_counitIso_hom_app, congrRight_unitIso_inv_app
congrRightFunctor 📖CompOp
2 mathmath: congrRightFunctor_obj, congrRightFunctor_map
counit 📖CompOp
29 mathmath: cancel_counit_right, functor_unit_comp, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, map_η_comp_η, counit_naturality_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, invFunIdAssoc_hom_app, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Sieve.functorPushforward_inverse, unitInv_app_inverse, CategoryTheory.Sieve.mem_functorPushforward_inverse, toAdjunction_counit, fun_inv_map, CategoryTheory.Functor.fun_inv_map, symm_counit, map_η_comp_η_assoc, functor_map_ε_inverse_comp_counit_app, fun_inv_map_assoc, functor_map_μ_inverse_comp_counit_app_tensor_assoc, unit_inverse_comp, functor_map_μ_inverse_comp_counit_app_tensor, Equivalence_mk'_counit, counit_app_functor, unit_inverse_comp_assoc, counit_naturality, functor_unit_comp_assoc
counitInv 📖CompOp
25 mathmath: symm_unit, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, cancel_counitInv_right, counitInv_functor_comp, counitInv_app_comp_functor_map_η_inverse_assoc, cancel_counitInv_right_assoc, invFunIdAssoc_inv_app, counitInv_app_comp_functor_map_η_inverse, fun_inv_map, CategoryTheory.Functor.fun_inv_map, inverse_counitInv_comp_assoc, counitInv_app_functor, counitInv_functor_comp_assoc, fun_inv_map_assoc, cancel_counitInv_right_assoc', unit_app_inverse, counitInv_naturality, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Equivalence_mk'_counitInv, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, counitInv_naturality_assoc, inverse_counitInv_comp, symmEquivInverse_map_app
counitIso 📖CompOp
368 mathmath: sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Discrete.sumEquiv_counitIso_inv_app, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.Adjunction.toEquivalence_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, mapGrp_counitIso, CategoryTheory.eq_counitIso, sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Pretriangulated.triangleRotation_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_eq, counitIso_inv_app_comp_functor_map_η_inverse, partialFunEquivPointed_counitIso_inv_app_toFun, CategoryTheory.equivOfTensorIsoUnit_counitIso, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.Join.mapPairEquiv_counitIso, CategoryTheory.CostructuredArrow.prodEquivalence_counitIso, rightOp_counitIso_inv_app, CategoryTheory.Under.equivalenceOfIsInitial_counitIso, CategoryTheory.CatCommSq.hInv_iso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.Over.equivalenceOfIsTerminal_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.ObjectProperty.topEquivalence_counitIso, CategoryTheory.Comon.Comon_EquivMon_OpOp_counitIso, CategoryTheory.Iso.isoInverseComp_inv_app, prod_counitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, leftOp_counitIso_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_left, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_right, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, CategoryTheory.Comma.opEquiv_counitIso, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_counitIso, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, congrFullSubcategory_counitIso, commGroupAddCommGroupEquivalence_counitIso, CategoryTheory.GradedObject.comapEquiv_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, CategoryTheory.ShortComplex.functorEquivalence_counitIso, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, CategoryTheory.Functor.currying_counitIso_hom_app_app, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.MonoOver.mapIso_counitIso, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_inv_app_snd_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.Functor.flipping_counitIso_inv_app_app_app, congrLeft_counitIso_inv_app, symm_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, CategoryTheory.Cat.opEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CoalgCat.comonEquivalence_counitIso, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_counitIso, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_hom_app, OrderHom.equivalenceFunctor_counitIso_inv_app_app, CategoryTheory.Functor.Initial.conesEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, Bipointed.swapEquiv_counitIso_hom_app_toFun, AddMonCat.equivalence_counitIso, CategoryTheory.Functor.opUnopEquiv_counitIso, CategoryTheory.Localization.equivalence_counitIso_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_counitIso, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.prod.associativity_counitIso, CategoryTheory.Comma.equivProd_counitIso_hom_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_inv_app, SimplicialObject.opEquivalence_counitIso, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.Functor.currying_counitIso_inv_app_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, CategoryTheory.AsSmall.equiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, CategoryTheory.Idempotents.DoldKan.equivalence_counitIso, CategoryTheory.TwoSquare.equivalenceJ_counitIso, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_hom_app, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_counitIso, CategoryTheory.Discrete.productEquiv_counitIso_hom_app, CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.ULift.equivalence_counitIso_hom_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, FinPartOrd.dualEquiv_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Functor.flipping_counitIso_hom_app_app_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, changeFunctor_counitIso_hom_app, refl_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, MulEquiv.toSingleObjEquiv_counitIso_hom, CategoryTheory.Under.postEquiv_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, unop_counitIso, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_counitIso, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.Adjunction.toEquivalence_counitIso_inv_app, CategoryTheory.Limits.Cones.postcomposeEquivalence_counitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_hom_app_fst_app, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_hom_app, changeInverse_counitIso_inv_app, HomologicalComplex.opEquivalence_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, TwoP.swapEquiv_counitIso_inv_app_hom_toFun, CategoryTheory.prod.rightUnitorEquivalence_counitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CategoryTheory.Comma.equivProd_counitIso_inv_app, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_left, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Discrete.sumEquiv_counitIso_hom_app, CategoryTheory.ShortComplex.opEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_counitIso, CategoryTheory.equivToOverUnit_counitIso, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_counitIso, CategoryTheory.ObjectProperty.fullSubcategoryCongr_counitIso, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, MulEquiv.toSingleObjEquiv_counitIso_inv, CategoryTheory.skeletonEquivalence_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_eq, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, OrderIso.equivalence_counitIso, sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, commAlgCatEquivUnder_counitIso, sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, HomologicalComplex₂.flipEquivalence_counitIso, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, ext_iff, symmEquivInverse_obj_counitIso_inv, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Over.opEquivOpUnder_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.forgetEnrichmentOppositeEquivalence_counitIso, changeInverse_counitIso_hom_app, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_counitIso, CategoryTheory.coalgebraEquivOver_counitIso, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.widePushoutShapeOpEquiv_counitIso, Bipointed.swapEquiv_counitIso_inv_app_toFun, CategoryTheory.Monad.algebraEquivOfIsoMonads_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, mapCommMon_counitIso, sheafCongr_counitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, symmEquiv_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_right, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, mapMon_counitIso, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.prod.leftUnitorEquivalence_counitIso, core_counitIso_hom_app_iso_hom, trans_counitIso, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.RelCat.opEquivalence_counitIso, CategoryTheory.ShrinkHoms.equivalence_counitIso, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_hom_app_app, CategoryTheory.Discrete.equivalence_counitIso, ModuleCat.matrixEquivalence_counitIso, CategoryTheory.orderDualEquivalence_counitIso, CategoryTheory.Discrete.productEquiv_counitIso_inv_app, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Idempotents.karoubiUniversal₁_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, Action.functorCategoryEquivalence_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, OrderHom.equivalenceFunctor_counitIso_hom_app_app, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_counitIso, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.functorProdFunctorEquiv_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_left, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_left, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_right, CategoryTheory.Pi.optionEquivalence_counitIso, CategoryTheory.opOpEquivalence_counitIso, functor_unitIso_comp, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, groupAddGroupEquivalence_counitIso, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, core_counitIso_hom_app_iso_inv, CategoryTheory.Over.iteratedSliceEquiv_counitIso, CategoryTheory.Groupoid.invEquivalence_counitIso, symm_counitIso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_counitIso, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.ULift.equivalence_counitIso_inv_app, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, CategoryTheory.Functor.Final.coconesEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.ForgetEnrichment.equiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Iso.inverseCompIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, CategoryTheory.prodOpEquiv_counitIso_hom_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, AddCommMonCat.equivalence_counitIso, leftOp_counitIso_hom_app, CategoryTheory.shiftEquiv'_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, mapCommGrp_counitIso, core_counitIso_inv_app_iso_hom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, partialFunEquivPointed_counitIso_hom_app_toFun, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, TwoP.swapEquiv_counitIso_hom_app_hom_toFun, CategoryTheory.Prod.braiding_counitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_eq, CategoryTheory.StructuredArrow.preEquivalence_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, symmEquivInverse_obj_unitIso_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, alexDiscEquivPreord_counitIso, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, TopologicalSpace.Opens.mapMapIso_counitIso, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Square.arrowArrowEquivalence'_counitIso, SimplexCategory.revEquivalence_counitIso, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_counitIso, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.StructuredArrow.prodEquivalence_counitIso, CategoryTheory.sheafBotEquivalence_counitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.equivEssImageOfReflective_counitIso, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, SSet.opEquivalence_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, Types.monoOverEquivalenceSet_counitIso, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, op_counitIso, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.prodOpEquiv_counitIso_inv_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_counitIso, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, HomologicalComplex.unopEquivalence_counitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_hom_app_snd_app, CategoryTheory.piEquivalenceFunctorDiscrete_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_counitIso, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Limits.widePullbackShapeOpEquiv_counitIso, core_counitIso_inv_app_iso_inv, CategoryTheory.Functor.equiv_counitIso, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, congrRight_counitIso_inv_app, CategoryTheory.Limits.Cocones.precomposeEquivalence_counitIso, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, congrRight_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.Square.arrowArrowEquivalence_counitIso, CategoryTheory.Sum.functorEquiv_counitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, changeFunctor_counitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, CategoryTheory.MonoidalOpposite.mopEquiv_counitIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_inv_app_fst_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, induced_counitIso, CategoryTheory.comonEquiv_counitIso, CategoryTheory.Square.flipEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift
fullyFaithfulFunctor 📖CompOp
5 mathmath: CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Limits.CategoricalPullback.mkNatIso_eq, additive_inverse_of_FullyFaithful
fullyFaithfulInverse 📖CompOp
funInvIdAssoc 📖CompOp
6 mathmath: funInvIdAssoc_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, congrLeft_unitIso_inv_app, congrLeft_unitIso_hom_app, funInvIdAssoc_inv_app
functor 📖CompOp
978 mathmath: CategoryTheory.MorphismProperty.LeftFraction.map_compatibility, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CochainComplex.acyclic_op, CategoryTheory.MorphismProperty.inverseImage_equivalence_inverse_eq_map_functor, CategoryTheory.sheafBotEquivalence_functor, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, leftOp_unitIso_hom_app, sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.Pi.eqToEquivalenceFunctorIso_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.WithInitial.equivComma_functor_obj_right_obj, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_map, mapGrp_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, Bipointed.swapEquiv_functor_obj_toProd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, comp_asNatTrans, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, sheafCongrPreregular_counitIso_inv_app_val_app, MoritaEquivalence.linear, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_map_val, CategoryTheory.WithTerminal.equivComma_functor_obj_left_obj, CategoryTheory.StructuredArrow.mapIso_functor_obj_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, sheafCongr_functor, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_functor, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, commGroupAddCommGroupEquivalence_functor, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Sum.functorEquivFunctorCompFstIso_inv_app_app, CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_functor, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, CategoryTheory.MonoOver.mapIso_functor, CategoryTheory.Limits.widePushoutShapeOpEquiv_functor, CategoryTheory.Comma.toPUnitIdEquiv_functor_map, CategoryTheory.MonoidalOpposite.mopMopEquivalence_functor_obj, CategoryTheory.Square.arrowArrowEquivalence_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_functor, CategoryTheory.Limits.parallelPairOpIso_inv_app_zero, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_functor, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_functor, AddMonCat.equivalence_functor_obj_coe, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.Join.mapPairEquiv_counitIso, rightOp_counitIso_inv_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.typeEquiv_functor_obj_val_obj, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.Sum.functorEquiv_functor_map, CategoryTheory.CatCommSq.hInv_iso_inv_app, CategoryTheory.Discrete.opposite_functor_obj_as, leftOp_unitIso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, leftOp_functor_obj, prod_functor, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff', CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CochainComplex.exactAt_op, CategoryTheory.Over.forgetMapTerminal_hom_app, rightOp_functor_map, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, CategoryTheory.Limits.PushoutCocone.unop_π_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, IsTriangulated.instIsTriangulatedFunctor, isRightAdjoint_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Under.mapIso_functor, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Iso.isoInverseComp_inv_app, CompleteLat.dualEquiv_functor, CategoryTheory.Comma.mapLeftIso_functor_map_left, prod_counitIso, Action.leftUnitor_inv_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, MonObj.mopEquivCompForgetIso_hom_app_unmop, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AlgebraicTopology.DoldKan.Compatibility.equivalence_functor, leftOp_counitIso_inv_app, CategoryTheory.shiftEquiv'_functor, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_fst_map, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, OrderIso.equivalence_functor, cancel_unit_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.Cocones.precomposeEquivalence_functor, CategoryTheory.Limits.Cones.functorialityEquivalence_functor, CategoryTheory.comonEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, cancel_counit_right, CategoryTheory.forgetEnrichmentOppositeEquivalence_functor, map_injective_iff, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.Functor.flipping_functor_map_app_app, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Monoidal.transportStruct_tensorHom, BoolAlg.dualEquiv_functor, CategoryTheory.Preadditive.DoldKan.equivalence_functor, FinPartOrd.dualEquiv_functor, CategoryTheory.Idempotents.karoubiUniversal_functor_eq, unitInv_naturality, functor_unit_comp, Action.whiskerRight_hom, CategoryTheory.Comma.mapRightIso_functor_map_left, inv_fun_map, full_functor, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, CategoryTheory.coalgebraEquivOver_functor, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_functor, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Under.equivalenceOfIsInitial_functor, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, HomologicalComplex.unopEquivalence_functor, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_functor, core_unitIso_hom_app_iso_inv, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Monoidal.transportStruct_tensorObj, CategoryTheory.WithTerminal.equivComma_functor_obj_left_map, toOrderIso_apply, CategoryTheory.Functor.curry₃_obj_obj_map_app, CategoryTheory.Limits.hasColimit_equivalence_comp, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, CochainComplex.homotopyUnop_hom_eq, FinBddDistLat.dualEquiv_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.WithTerminal.equivComma_functor_obj_right, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CategoryTheory.Join.opEquiv_functor_obj_op_right, BddOrd.dualEquiv_functor, CategoryTheory.Limits.parallelPairOpIso_inv_app_one, changeInverse_functor, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_incl, CategoryTheory.Idempotents.karoubiUniversal₁_functor, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, sheafCongrPreregular_inverse_obj_val_map, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, congrLeft_counitIso_inv_app, CategoryTheory.Comma.mapRightIso_functor_obj_right, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.TwoSquare.GuitartExact.vComp_iff_of_equivalences, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, TwoP.swapEquiv_functor_map_hom_toFun, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, symm_unitIso, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, CategoryTheory.WithInitial.equivComma_functor_obj_right_map, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₂, mapHomologicalComplex_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, boolRingCatEquivBoolAlg_functor, CategoryTheory.Functor.asEquivalence_functor, CategoryTheory.ShrinkHoms.equivalence_functor, funInvIdAssoc_hom_app, CategoryTheory.Functor.Final.coconesEquiv_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, pi_functor, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CategoryTheory.Idempotents.toKaroubiEquivalence_functor_additive, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Comon.Comon_EquivMon_OpOp_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₁, sheafCongrPrecoherent_functor_obj_val_obj, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_iso_inv_app, CategoryTheory.Localization.equivalence_counitIso_app, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.ShortComplex.functorEquivalence_functor, CategoryTheory.eq_functor_obj, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_fst_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Monoidal.transportStruct_tensorUnit, CategoryTheory.piEquivalenceFunctorDiscrete_functor_obj, CategoryTheory.Limits.Cocones.equivalenceOfReindexing_functor_obj, ModuleCat.matrixEquivalence_functor, PartOrd.dualEquiv_functor, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.StructuredArrow.prodEquivalence_functor, cancel_counitInv_right, AddCommMonCat.equivalence_functor_map, SemilatSupCatEquivSemilatInfCat_functor, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, faithful_functor, changeFunctor_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, map_η_comp_η, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, counit_naturality_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, mapCommGrp_functor, Lat.dualEquiv_functor, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Limits.parallelPairOpIso_hom_app_one, commAlgCatEquivUnder_functor_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, inverseFunctor_map, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.CostructuredArrow.mapIso_functor_obj_left, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, sheafCongrPreregular_functor_obj_val_obj, CategoryTheory.MonoidalCategory.DayFunctor.equiv_functor_map, changeFunctor_trans, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, sheafCongrPreregular_functor_map_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.functorProdFunctorEquiv_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Functor.curry₃_obj_map_app_app, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.IsSeparating.of_equivalence, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, HomologicalComplex.dgoEquivHomologicalComplex_functor, CategoryTheory.WithTerminal.equivComma_functor_map_right, CategoryTheory.Comon.monoidal_whiskerLeft_hom, mapMon_unitIso, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_functor, CategoryTheory.Comma.toPUnitIdEquiv_functor_obj, CategoryTheory.StructuredArrow.preEquivalence_functor, mapAction_functor, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_obj, pi_unitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_functor, counitInv_functor_comp, sheafCongrPreregular_inverse_map_val_app, sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.IsSeparator.of_equivalence, CategoryTheory.decomposedEquiv_functor, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_fst_app, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_fst, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, symmEquivFunctor_map, sheafCongrPreregular_functor_obj_val_map, CategoryTheory.Comma.mapLeftIso_functor_obj_left, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_hom, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃, AlgebraicTopology.DoldKan.Compatibility.equivalence₁_functor, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, refl_functor, CategoryTheory.Over.forgetMapTerminal_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_map, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, partialFunEquivPointed_functor_map_toFun, CategoryTheory.TwoSquare.GuitartExact.vComp'_iff_of_equivalences, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, FinBoolAlg.dualEquiv_functor, CategoryTheory.Over.equivalenceOfIsTerminal_functor, sheafCongrPrecoherent_inverse_map_val_app, isDenseSubsite_functor_of_isCocontinuous, Action.functorCategoryEquivalence_functor, rightOp_unitIso_hom_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_μ, CategoryTheory.prod.rightUnitorEquivalence_functor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Join.opEquiv_functor_map_op_edge, CategoryTheory.Limits.walkingParallelPairOpEquiv_functor, TopologicalSpace.Opens.mapMapIso_functor, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ε, congrLeft_functor, CategoryTheory.Join.opEquiv_functor_map_op_inclRight, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.Iso.compInverseIso_inv_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, unitInv_naturality_assoc, CategoryTheory.ShortComplex.opEquiv_functor, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, CategoryTheory.CatCommSq.vInv_iso_hom_app, DistLat.dualEquiv_functor, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_map, CategoryTheory.Comma.mapRightIso_functor_obj_hom, essSurj_functor, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_snd_app, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_obj, map_projective_iff, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, congrRight_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, changeFunctor_counitIso_hom_app, Preord.dualEquiv_functor, CategoryTheory.equivEssImageOfReflective_functor, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, MulEquiv.toSingleObjEquiv_functor_obj, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, CategoryTheory.Discrete.equivalence_functor, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.Groupoid.invEquivalence_functor_map, counitInv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, sheafCongrPrecoherent_inverse_obj_val_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Functor.curry₃_obj_obj_obj_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, unop_counitIso, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₁, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_hom, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, mapCommGrp_unitIso, cancel_unitInv_right, invFunIdAssoc_hom_app, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Functor.opUnopEquiv_functor, CategoryTheory.sum.associativity_functor, CategoryTheory.Iso.compInverseIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, CategoryTheory.WithInitial.equivComma_functor_map_left, changeFunctor_refl, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.WithTerminal.opEquiv_functor_obj, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app, CategoryTheory.Sieve.functorPushforward_inverse, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, changeInverse_counitIso_inv_app, CategoryTheory.Limits.opCospan_hom_app, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_map_term, CategoryTheory.IsCoseparating.of_equivalence, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.RelCat.opEquivalence_functor, CategoryTheory.Functor.equiv_functor_obj, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, CategoryTheory.IsUniversalColimit.whiskerEquivalence, CategoryTheory.Monad.algebraEquivOfIsoMonads_functor, sheafCongr.inverse_obj_val_obj, mapCommMon_unitIso, instIsDenseSubsiteInducedTopologyInverseFunctor, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, mkIso_hom, changeInverse_unitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.Pretriangulated.op_distinguished, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_functor, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, CoalgCat.comonEquivalence_functor, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_inverseImage_iff, CategoryTheory.Prod.braiding_functor, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_obj, CategoryTheory.Limits.Cones.postcomposeEquivalence_functor, CategoryTheory.AsSmall.equiv_functor, symmEquiv_functor, CategoryTheory.Under.forgetMapInitial_hom_app, symmEquivInverse_obj_functor, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_obj_some, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_functor, CategoryTheory.Comma.mapRightIso_functor_map_right, cancel_counitInv_right_assoc, TwoP.swapEquiv_functor_obj_X, CategoryTheory.WithInitial.equivComma_functor_map_right_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Comma.toIdPUnitEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, TwoP.swapEquiv_functor_obj_toTwoPointing_toProd, sheafCongr.unitIso_hom_app_val_app, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.MonoidalCategory.DayFunctor.equiv_functor_obj, Bipointed.swapEquiv_functor_map_toFun, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_inv_app_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.typeEquiv_functor_obj_val_map, CategoryTheory.Over.iteratedSliceEquiv_functor, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_iso_hom_app, invFunIdAssoc_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.Monoidal.transportStruct_whiskerRight, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_pt, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_functor, CategoryTheory.Comma.toIdPUnitEquiv_functor_obj, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, BddDistLat.dualEquiv_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, congrLeft_unitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, CategoryTheory.Cat.opEquivalence_functor, CategoryTheory.Adjunction.rightOp_eq, cancel_unit_right_assoc, mapGrp_unitIso, functorFunctor_obj, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_hom_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, counitInv_app_comp_functor_map_η_inverse, sheafCongrPreregular_counitIso_hom_app_val_app, CochainComplex.homotopyOp_hom_eq, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, CategoryTheory.Limits.opCospan_inv_app, congrLeft_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, sheafCongrPrecoherent_counitIso_inv_app_val_app, mapHomologicalComplex_functor, unitInv_app_inverse, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_functor, ext_iff, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_functor, symmEquivInverse_obj_counitIso_inv, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Pretriangulated.mem_distTriang_op_iff', CategoryTheory.Comma.mapRightIso_functor_obj_left, OrderHom.equivalenceFunctor_functor_obj_obj, CategoryTheory.ForgetEnrichment.equiv_functor, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Mat_.equivalenceSelfOfHasFiniteBiproducts_functor, changeFunctor_unitIso_inv_app, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.ULift.equivalence_functor, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_π, CategoryTheory.Sieve.mem_functorPushforward_inverse, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, ContAction.resEquiv_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Discrete.equivOfEquivalence_apply, CategoryTheory.Functor.flipping_functor_obj_map_app, CategoryTheory.Comma.toPUnitIdEquiv_functor_iso, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, IsTriangulated.instIsTriangulatedFunctorSymmOfInverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, changeInverse_counitIso_hom_app, CategoryTheory.Join.opEquiv_functor_obj_op_left, groupAddGroupEquivalence_functor, CategoryTheory.StructuredArrow.mapIso_functor_obj_right, toAdjunction_counit, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, fun_inv_map, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_functor_map, Bipointed.swapEquiv_functor_obj_X, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_functor, CategoryTheory.IsVanKampenColimit.whiskerEquivalence, CategoryTheory.prod.associativity_functor, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.StructuredArrow.mapIso_functor_map_left, congrLeftFunctor_map, core_functor_obj_of, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.MonoOver.congr_functor, isEquivalence_functor, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_isoBot, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_obj, mapCommMon_counitIso, CategoryTheory.ObjectProperty.IsSeparating.of_equivalence, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, core_functor_map_iso_inv, CategoryTheory.Limits.walkingCospanOpEquiv_functor_map, CategoryTheory.eq_functor_map, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, partialFunEquivPointed_functor_obj_X, CategoryTheory.MonoOver.congr_inverse, cancel_unit_right_assoc', CategoryTheory.Functor.fun_inv_map, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, op_functor, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, HomologicalComplex₂.flipEquivalence_functor, mapMon_counitIso, CategoryTheory.Limits.Cone.equivCostructuredArrow_functor, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, core_counitIso_hom_app_iso_hom, inv_fun_map_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, inverse_counitInv_comp_assoc, sheafCongrPrecoherent_unitIso_inv_app_val_app, TopCat.Presheaf.presheafEquivOfIso_functor_obj_obj, symm_functor, trans_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, changeFunctor_functor, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, CategoryTheory.Limits.Fork.op_ι_app, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.IsVanKampenColimit.whiskerEquivalence_iff, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₂, CategoryTheory.WithInitial.equivComma_functor_obj_left, rightOp_functor_obj, map_η_comp_η_assoc, CategoryTheory.Functor.instIsWellOrderContinuousCompFunctorEquivalence, CategoryTheory.Limits.walkingCospanOpEquiv_functor_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.simplicialCosimplicialEquiv_functor_map_app, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.Limits.walkingSpanOpEquiv_functor_map, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.Discrete.sumEquiv_functor_obj, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, isLeftAdjoint_functor, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.orderDualEquivalence_functor_obj, CategoryTheory.Comma.opEquiv_functor, counitInv_app_functor, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Sum.functorEquivFunctorCompSndIso_inv_app_app, CategoryTheory.Functor.flipping_functor_obj_obj_obj, CategoryTheory.Under.postEquiv_inverse, CategoryTheory.equivOfTensorIsoUnit_functor, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, counitInv_functor_comp_assoc, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, functor_map_ε_inverse_comp_counit_app, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, fun_inv_map_assoc, CategoryTheory.Functor.closedIhom_map_app, ε_comp_map_ε, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, comp_asNatTrans_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, SimplexCategory.revEquivalence_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_functor, CategoryTheory.Functor.currying_functor_obj_obj, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.Pi.optionEquivalence_functor, CategoryTheory.Functor.isLeftKanExtensionAlongEquivalence, unit_naturality_assoc, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_snd_obj, unit_app_tensor_comp_inverse_map_δ_functor_assoc, Action.tensorHom_hom, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, Action.associator_hom_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.Subobject.lowerEquivalence_unitIso, unit_naturality, CategoryTheory.Sieve.mem_functorPushforward_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, ModuleCat.restrictScalarsEquivalenceOfRingEquiv_additive, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_obj_val, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_inv, CategoryTheory.orderDualEquivalence_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.Limits.widePullbackShapeOpEquiv_functor, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Groupoid.invEquivalence_functor_obj, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.Pi.eqToEquivalenceFunctorIso_inv, sheafCongrPrecoherent_inverse_obj_val_map, core_counitIso_hom_app_iso_inv, sheafCongrPrecoherent_unitIso_hom_app_val_app, cancel_counitInv_right_assoc', CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_δ, symm_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_functor, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_F, mapMon_functor, AlgebraicTopology.DoldKan.Compatibility.τ₁_hom_app, CategoryTheory.Comma.mapLeftIso_functor_obj_hom, unit_app_comp_inverse_map_η_functor, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_functor, functor_map_μ_inverse_comp_counit_app_tensor_assoc, Action.whiskerLeft_hom, core_unitIso_hom_app_iso_hom, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.ObjectProperty.IsCoseparating.of_equivalence, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, sheafCongrPreregular_inverse_obj_val_obj, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, rightOp_unitIso_inv_app, id_asNatTrans, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Over.postEquiv_unitIso, unit_app_inverse, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_η, CategoryTheory.typeEquiv_functor_map_val_app, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Idempotents.karoubiUniversal₂_functor_eq, CategoryTheory.Functor.equiv_functor_map, HomologicalComplex.opEquivalence_functor, CategoryTheory.Functor.inv_fun_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, sheafCongr.inverse_obj_val_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.ObjectProperty.fullSubcategoryCongr_functor, CategoryTheory.Idempotents.DoldKan.equivalence_functor, NonemptyFinLinOrd.dualEquiv_functor, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.CostructuredArrow.prodEquivalence_functor, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_functor, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Square.arrowArrowEquivalence'_functor, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₂, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.WithTerminal.equivComma_functor_map_left_app, CategoryTheory.Functor.flipping_functor_obj_obj_map, CategoryTheory.Abelian.DoldKan.equivalence_functor, mkHom_id_functor, counitInv_naturality, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, unit_inverse_comp, CategoryTheory.prodOpEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, AddCommMonCat.equivalence_functor_obj_coe, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, PartOrdEmb.dualEquiv_functor, CategoryTheory.Iso.inverseCompIso_inv_app, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_obj, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, LinOrd.dualEquiv_functor, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, commAlgCatEquivUnder_functor_map, CategoryTheory.WithInitial.opEquiv_functor_obj, CategoryTheory.ShiftedHom.opEquiv_symm_apply, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_functor, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, CategoryTheory.prodOpEquiv_functor_obj, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_left, leftOp_counitIso_hom_app, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, CategoryTheory.Limits.walkingSpanOpEquiv_functor_obj, functor_map_μ_inverse_comp_counit_app_tensor, mapCommGrp_counitIso, CategoryTheory.MorphismProperty.inverseImage_equivalence_functor_eq_map_inverse, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, Action.rightUnitor_hom_hom, core_counitIso_inv_app_iso_hom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, CategoryTheory.simplicialCosimplicialAugmentedEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.Monad.monadMonEquiv_functor, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.CostructuredArrow.mapIso_functor_obj_right, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, sheafCongr.inverse_map_val_app, CategoryTheory.Discrete.sumEquiv_functor_map, CategoryTheory.MonoidalOpposite.unmopEquiv_functor_map, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.TwoSquare.equivalenceJ_functor, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, CategoryTheory.equivToOverUnit_functor, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, Action.associator_inv_hom, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, core_functor_map_iso_hom, AddMonCat.equivalence_functor_map, Action.resEquiv_functor, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, trans_functor, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_inverseImage_iff, CategoryTheory.isCardinalPresentable_of_equivalence, congrLeft_inverse, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, symmEquivInverse_obj_unitIso_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_functor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_functor, CategoryTheory.Comma.equivProd_functor_map, Action.functorCategoryEquivalence_linear, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.piEquivalenceFunctorDiscrete_functor_map, unop_functor, CategoryTheory.MonoOver.congr_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_functor, op_unitIso, mkHom_comp, CategoryTheory.Over.opEquivOpUnder_functor_map, induced_functor, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_obj, CategoryTheory.IsCoseparator.of_equivalence, mkIso_inv, Action.functorCategoryEquivalence_preservesZeroMorphisms, CategoryTheory.Under.postEquiv_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.Subobject.lowerEquivalence_functor, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_obj_none, CategoryTheory.Over.mapIso_functor, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, changeInverse_unitIso_hom_app, CategoryTheory.Comma.mapLeftIso_functor_obj_right, Action.rightUnitor_inv_hom, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, congrRight_unitIso_hom_app, CategoryTheory.IsUniversalColimit.whiskerEquivalence_iff, partialFunEquivPointed_functor_obj_point, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.Functor.currying_functor_obj_map, CategoryTheory.Functor.leftOpRightOpEquiv_functor_map_app, CategoryTheory.skeletonEquivalence_functor, CategoryTheory.Monoidal.transportStruct_whiskerLeft, CategoryTheory.Discrete.productEquiv_functor_obj, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, ε_comp_map_ε_assoc, SimplicialObject.opEquivalence_functor, core_unitIso_inv_app_iso_hom, CategoryTheory.Join.opEquiv_functor_map_op_inclLeft, MulEquiv.toSingleObjEquiv_functor_map, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Under.opEquivOpOver_functor_map, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, trans_unitIso, CategoryTheory.Under.postEquiv_unitIso, CategoryTheory.Pretriangulated.triangleRotation_functor, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.Sum.functorEquivFunctorCompSndIso_hom_app_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, CategoryTheory.Sum.functorEquivFunctorCompFstIso_hom_app_app, CategoryTheory.ObjectProperty.topEquivalence_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, leftOp_functor_map, CategoryTheory.Limits.HasLimit.isoOfEquivalence_inv_π, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_functor, funInvIdAssoc_inv_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_functor, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, mkHom_comp_assoc, CategoryTheory.prod.functorProdToProdFunctorAssociator_inv_app, symmEquivInverse_obj_inverse, Action.functorCategoryEquivalence_additive, CategoryTheory.Limits.hasLimit_equivalence_comp, CategoryTheory.Comma.toIdPUnitEquiv_functor_iso, mapGrp_functor, CategoryTheory.Limits.opSpan_inv_app, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_inverse, op_counitIso, CategoryTheory.Functor.Initial.conesEquiv_functor, CategoryTheory.Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Limits.Cocone.equivStructuredArrow_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, toAdjunction_unit, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_snd, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, core_unitIso_inv_app_iso_inv, CategoryTheory.Discrete.productEquiv_functor_map, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, ModuleCat.Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, mapCommMon_functor, CategoryTheory.algebraEquivUnder_functor, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_map, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, counitInv_naturality_assoc, instIsDenseSubsiteFunctor, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, CategoryTheory.Join.mapPairEquiv_functor, counit_app_functor, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_functor, CategoryTheory.MonoidalOpposite.mopEquiv_functor, alexDiscEquivPreord_functor, CategoryTheory.Pi.equivalenceOfEquiv_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, TopCat.Presheaf.presheafEquivOfIso_functor_obj_map, CategoryTheory.Limits.CategoricalPullback.mkNatIso_eq, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.GradedObject.comapEquiv_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Sum.Swap.equivalence_functor, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, inverse_counitInv_comp, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor, CategoryTheory.Adjunction.toEquivalence_functor, CategoryTheory.Over.postEquiv_functor, core_counitIso_inv_app_iso_inv, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, CategoryTheory.WithTerminal.opEquiv_functor_map, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_hom_app, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₂, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, BddLat.dualEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, congrRightFunctor_map, unit_inverse_comp_assoc, symm_inverse, congrRight_counitIso_inv_app, counit_naturality, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CategoryTheory.Comma.mapLeftIso_functor_map_right, CategoryTheory.Functor.currying_functor_map_app, CategoryTheory.Square.flipEquivalence_functor, Action.leftUnitor_hom_hom, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.opOpEquivalence_functor, CategoryTheory.WithTerminal.widePullbackShapeEquiv_functor_obj, CategoryTheory.prod.functorProdToProdFunctorAssociator_hom_app, CategoryTheory.Comma.equivProd_functor_obj, congrRight_counitIso_hom_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_map, trans_toAdjunction, changeFunctor_counitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_functor_obj, CategoryTheory.Sum.functorEquiv_functor_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, SSet.opEquivalence_functor, congrRight_unitIso_inv_app, functor_unit_comp_assoc, additive_inverse_of_FullyFaithful, symmEquivInverse_map_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_snd_map, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.prod.leftUnitorEquivalence_functor, CategoryTheory.Functor.isRightKanExtensionAlongEquivalence, CategoryTheory.Limits.parallelPairOpIso_hom_app_zero, FundamentalGroupoid.punitEquivDiscretePUnit_functor
functorFunctor 📖CompOp
3 mathmath: functorFunctor_obj, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, functorFunctor_map
instCategory 📖CompOp
35 mathmath: symmEquivFunctor_obj, comp_asNatTrans, mkHom_id_inverse, inverseFunctor_obj, symmEquivInverse_obj_counitIso_hom, inverseFunctor_map, symmEquivFunctor_map, inverseFunctorObjIso_inv, mkIso_hom, congrLeftFunctor_obj, symmEquiv_functor, symmEquivInverse_obj_functor, functorFunctor_obj, symmEquivInverse_obj_counitIso_inv, inverseFunctorObj'_hom_app, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, congrLeftFunctor_map, symmEquiv_counitIso, symmEquiv_unitIso, comp_asNatTrans_assoc, symmEquiv_inverse, id_asNatTrans, congrRightFunctor_obj, mkHom_id_functor, functorFunctor_map, inverseFunctorObjIso_hom, inverseFunctorObj'_inv_app, symmEquivInverse_obj_unitIso_inv, mkHom_comp, mkIso_inv, mkHom_comp_assoc, symmEquivInverse_obj_inverse, symmEquivInverse_obj_unitIso_hom, congrRightFunctor_map, symmEquivInverse_map_app
instInhabited 📖CompOp
instPowInt 📖CompOp
3 mathmath: pow_one, pow_zero, pow_neg_one
invFunIdAssoc 📖CompOp
12 mathmath: CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, congrLeft_counitIso_inv_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, invFunIdAssoc_hom_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, invFunIdAssoc_inv_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, congrLeft_counitIso_hom_app
inverse 📖CompOp
869 mathmath: CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CategoryTheory.MorphismProperty.inverseImage_equivalence_inverse_eq_map_functor, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, leftOp_unitIso_hom_app, sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, preregular_isSheaf_iff, CategoryTheory.Adjunction.toEquivalence_inverse, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, isLeftAdjoint_inverse, congrFullSubcategory_inverse, CategoryTheory.Comma.mapLeftIso_inverse_map_right, CategoryTheory.sum.associativity_inverse, mapGrp_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff, isEquivalence_inverse, CategoryTheory.Join.mapPairEquiv_inverse, CategoryTheory.Groupoid.invEquivalence_inverse_map, mapMon_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_map, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, isDenseSubsite_inverse_of_isCocontinuous, counitIso_inv_app_comp_functor_map_η_inverse, BddDistLat.dualEquiv_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.Over.mapIso_inverse, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_inverse, CategoryTheory.Join.mapPairEquiv_counitIso, mapCommMon_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_inverse, rightOp_counitIso_inv_app, Bipointed.swapEquiv_inverse_obj_toProd, CategoryTheory.Limits.widePushoutShapeOpEquiv_inverse, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.CatCommSq.hInv_iso_inv_app, leftOp_unitIso_inv_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, alexDiscEquivPreord_inverse_obj_carrier, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_iso_inv, faithful_inverse, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Join.inclRightCompOpEquivInverse_inv_app_op, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.WithTerminal.opEquiv_inverse_obj, core_inverse_map_iso_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_map_snd, ModuleCat.matrixEquivalence_inverse, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CondensedMod.isDiscrete_tfae, CategoryTheory.piEquivalenceFunctorDiscrete_inverse_obj, CategoryTheory.prodOpEquiv_inverse_map, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, Action.functorCategoryEquivalence_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, precoherent_isSheaf_iff_of_essentiallySmall, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Iso.isoInverseComp_inv_app, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, prod_counitIso, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_inverse, Action.leftUnitor_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence_functor, leftOp_counitIso_inv_app, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, FinBoolAlg.dualEquiv_inverse, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, cancel_unit_right, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.Functor.currying_inverse_obj_obj_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, pi_inverse, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, CategoryTheory.Monad.algebraEquivOfIsoMonads_inverse, congrFullSubcategory_counitIso, cancel_counit_right, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, MulEquiv.toSingleObjEquiv_inverse_map, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Monoidal.transportStruct_tensorHom, CategoryTheory.Idempotents.functorExtension_map_app, unitInv_naturality, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, functor_unit_comp, Action.whiskerRight_hom, inv_fun_map, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.functorProdFunctorEquiv_inverse, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.Sum.Swap.equivalence_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Discrete.sumEquiv_inverse_map, CategoryTheory.Comma.mapRightIso_inverse_map_right, core_unitIso_hom_app_iso_inv, CategoryTheory.prod.associativity_inverse, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Monoidal.transportStruct_tensorObj, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CoalgCat.comonEquivalence_inverse, CategoryTheory.Functor.flipping_inverse_obj_obj_map, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, mkHom_id_inverse, Rep.homEquiv_apply_hom, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_map_unmop, Types.monoOverEquivalenceSet_inverse_map, CategoryTheory.MonoidalCategory.DayFunctor.equiv_inverse_obj_functor, sheafCongrPreregular_inverse_obj_val_map, SSet.opEquivalence_inverse, congrLeft_counitIso_inv_app, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, inverseFunctor_obj, alexDiscEquivPreord_inverse_obj_str, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, symm_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, mapHomologicalComplex_unitIso, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, funInvIdAssoc_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Comma.mapLeftIso_inverse_obj_left, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, AddMonCat.equivalence_inverse_map, CategoryTheory.ObjectProperty.fullSubcategoryCongr_inverse, CategoryTheory.shiftEquiv'_inverse, refl_inverse, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.MonoidalCategory.DayFunctor.equiv_inverse_map_natTrans, sheafCongrPrecoherent_functor_obj_val_obj, changeInverse_inverse, CategoryTheory.Limits.spanOp_hom_app, CategoryTheory.Localization.equivalence_counitIso_app, Preord.dualEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.Join.opEquiv_inverse_map_inclRight_op, CategoryTheory.Sum.functorEquiv_inverse_map, CategoryTheory.Over.opEquivOpUnder_inverse_obj, CategoryTheory.Limits.widePullbackShapeOpEquiv_inverse, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Functor.currying_inverse_obj_obj_map, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.Comma.mapLeftIso_inverse_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_obj_unmop, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, cancel_counitInv_right, ContAction.resEquiv_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, changeFunctor_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, map_η_comp_η, counit_naturality_assoc, CategoryTheory.StructuredArrow.mapIso_inverse_obj_right, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, Bipointed.swapEquiv_inverse_map_toFun, Bipointed.swapEquiv_inverse_obj_X, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.PullbackCone.op_ι_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_inverse, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_map, CategoryTheory.typeEquiv_inverse_obj, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, inverseFunctor_map, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_inverse, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, sheafCongrPreregular_functor_obj_val_obj, CategoryTheory.skeletonEquivalence_inverse, alexDiscEquivPreord_inverse_map, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, CategoryTheory.Limits.Cone.equivCostructuredArrow_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, sheafCongrPreregular_functor_map_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_map_val, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.Limits.opParallelPairIso_hom_app_zero, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_obj, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_left, TwoP.swapEquiv_inverse_obj_X, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.StructuredArrow.preEquivalence_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_map_unmop_unmop, mapMon_unitIso, pi_unitIso, counitInv_functor_comp, CategoryTheory.Mon.limit_mon_mul, sheafCongrPreregular_inverse_map_val_app, sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.WithInitial.opEquiv_inverse_obj, rightOp_inverse_map, CategoryTheory.Idempotents.functorExtension_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.Limits.opParallelPairIso_hom_app_one, symmEquivFunctor_map, sheafCongrPreregular_functor_obj_val_map, CategoryTheory.Over.equivalenceOfIsTerminal_inverse_map, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.Limits.instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_inverse, CategoryTheory.CostructuredArrow.prodEquivalence_inverse, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_map_app_snd, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.eq_inverse_obj, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.prod.rightUnitorEquivalence_inverse, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Square.flipEquivalence_inverse, sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.Limits.spanOp_inv_app, rightOp_unitIso_hom_app, CategoryTheory.Groupoid.invEquivalence_inverse_obj, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_inv_app_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.cosimplicialSimplicialEquiv_inverse_obj, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.monoOver_terminal_to_subterminals_comp, CommShift.instCommShiftHomFunctorCounitIso, congrLeft_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.opOpEquivalence_inverse, CategoryTheory.Iso.compInverseIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, unitInv_naturality_assoc, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.sheafBotEquivalence_inverse_map_val, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.Join.opEquiv_inverse_obj_right_op, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, changeFunctor_counitIso_hom_app, AddMonCat.equivalence_inverse_obj_coe, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_obj, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_base, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, counitInv_app_comp_functor_map_η_inverse_assoc, sheafCongrPrecoherent_inverse_obj_val_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, unop_counitIso, CategoryTheory.Idempotents.DoldKan.equivalence_inverse, CategoryTheory.AsSmall.equiv_inverse, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_hom_app_app, mapGrp_inverse, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, mapCommGrp_unitIso, cancel_unitInv_right, invFunIdAssoc_hom_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.algebraEquivUnder_inverse, CategoryTheory.Iso.compInverseIso_hom_app, CategoryTheory.sheafBotEquivalence_inverse_obj_val, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, MonObj.mopEquiv_inverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Sieve.functorPushforward_inverse, congrFullSubcategory_unitIso, inverseFunctorObjIso_inv, changeInverse_counitIso_inv_app, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, mapCommMon_unitIso, instIsDenseSubsiteInducedTopologyInverseFunctor, CategoryTheory.Square.arrowArrowEquivalence_inverse, changeInverse_unitIso_inv_app, CategoryTheory.Over.equivalenceOfIsTerminal_inverse_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, rightOp_inverse_obj, MulEquiv.toSingleObjEquiv_inverse_obj, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_inverse, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Cat.opEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_map, CategoryTheory.TwoSquare.equivalenceJ_inverse, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, MonObj.mopEquiv_inverse_obj_X, CategoryTheory.Comma.mapRightIso_inverse_obj_right, CategoryTheory.Pretriangulated.mem_distTriang_op_iff, CategoryTheory.Functor.opUnopEquiv_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_inverse, PartOrdEmb.dualEquiv_inverse, symmEquivInverse_obj_functor, cancel_counitInv_right_assoc, CategoryTheory.Join.opEquiv_inverse_map_inclLeft_op, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_inverse, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_inverse_obj_left_as, sheafCongr.unitIso_hom_app_val_app, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, TopologicalSpace.Opens.mapMapIso_inverse, invFunIdAssoc_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Monoidal.transportStruct_whiskerRight, induced_inverse_map, CategoryTheory.Functor.Initial.conesEquiv_inverse, groupAddGroupEquivalence_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Limits.PushoutCocone.op_π_app, congrLeft_unitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Idempotents.DoldKan.N_obj, cancel_unit_right_assoc, mapGrp_unitIso, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_map, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, counitInv_app_comp_functor_map_η_inverse, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CategoryTheory.WithInitial.equivComma_inverse_obj_map, sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.prod.leftUnitorEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, congrLeft_unitIso_hom_app, sheafCongrPrecoherent_counitIso_inv_app_val_app, partialFunEquivPointed_inverse_obj, unitInv_app_inverse, sheafCongr.functor_map_val_app, CategoryTheory.ForgetEnrichment.equiv_inverse, ext_iff, CategoryTheory.Comma.toPUnitIdEquiv_inverse_map_left, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_inverse, symmEquivInverse_obj_counitIso_inv, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Join.inclRightCompOpEquivInverse_hom_app_op, CategoryTheory.Limits.cospanOp_hom_app, changeFunctor_unitIso_inv_app, AddCommMonCat.equivalence_inverse_obj_coe, CategoryTheory.Monoidal.transportStruct_leftUnitor, inverseFunctorObj'_hom_app, CategoryTheory.Sieve.mem_functorPushforward_inverse, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.typeEquiv_inverse_map, CategoryTheory.Comma.equivProd_inverse_map_right, Lat.dualEquiv_inverse, commAlgCatEquivUnder_inverse_obj_carrier, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, BoolAlg.dualEquiv_inverse, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, leftOp_inverse_map, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_inverse, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, boolRingCatEquivBoolAlg_inverse, CategoryTheory.Under.mapIso_inverse, changeInverse_counitIso_hom_app, toAdjunction_counit, CategoryTheory.Join.opEquiv_inverse_obj_left_op, fun_inv_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_pt, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Limits.instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor, congrLeftFunctor_map, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.Join.inclLeftCompOpEquivInverse_inv_app_op, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.HasExactColimitsOfShape.of_codomain_equivalence, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, CategoryTheory.Comma.mapLeftIso_inverse_obj_hom, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, mapCommMon_counitIso, CategoryTheory.Square.arrowArrowEquivalence'_inverse, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, SemilatSupCatEquivSemilatInfCat_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.MonoOver.congr_inverse, cancel_unit_right_assoc', CategoryTheory.Functor.fun_inv_map, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.WithTerminal.widePullbackShapeEquiv_inverse_obj, mapMon_counitIso, CategoryTheory.Comma.equivProd_inverse_obj_right, sheafCongr.functor_obj_val_map, CategoryTheory.forgetEnrichmentOppositeEquivalence_inverse, CompleteLat.dualEquiv_inverse, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.GradedObject.comapEquiv_inverse, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, core_counitIso_hom_app_iso_hom, inv_fun_map_assoc, inverse_counitInv_comp_assoc, sheafCongrPrecoherent_unitIso_inv_app_val_app, induced_inverse_obj, core_inverse_map_iso_inv, symm_functor, trans_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_map, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, map_η_comp_η_assoc, FinPartOrd.dualEquiv_inverse, CategoryTheory.simplicialCosimplicialEquiv_inverse_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CondensedSet.isDiscrete_tfae, precoherent_isSheaf_iff, HomologicalComplex₂.flipEquivalence_inverse, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_hom_app_app, CategoryTheory.ShortComplex.opEquiv_inverse, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_map_fst, CategoryTheory.Monad.monadMonEquiv_inverse, CategoryTheory.Abelian.DoldKan.equivalence_inverse, counitInv_app_functor, CategoryTheory.Functor.flipping_inverse_obj_map_app, inverseLinear, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Pretriangulated.unop_distinguished, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Under.postEquiv_inverse, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, TwoP.swapEquiv_inverse_obj_toTwoPointing_toProd, counitInv_functor_comp_assoc, CategoryTheory.Join.inclLeftCompOpEquivInverse_hom_app_op, functor_map_ε_inverse_comp_counit_app, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, fun_inv_map_assoc, CategoryTheory.Comma.toPUnitIdEquiv_inverse_obj_right_as, ε_comp_map_ε, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, core_inverse_obj_of, instIsDenseSubsiteRegularTopologyInverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, CategoryTheory.Pi.optionEquivalence_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence_inverse, mapCommGrp_inverse, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.RelCat.opEquivalence_inverse, unit_naturality_assoc, unit_app_tensor_comp_inverse_map_δ_functor_assoc, Action.tensorHom_hom, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, Action.associator_hom_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.equivOfTensorIsoUnit_inverse, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_inverse, CategoryTheory.Subobject.lowerEquivalence_unitIso, unit_naturality, CategoryTheory.Sieve.mem_functorPushforward_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Sheaf.isConstant_iff_of_equivalence, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, eq_inducedTopology_of_isDenseSubsite, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.Prod.braiding_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_iso_hom, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, OrderIso.equivalence_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, sheafCongrPrecoherent_inverse_obj_val_map, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, CategoryTheory.Comma.toPUnitIdEquiv_inverse_obj_left, core_counitIso_hom_app_iso_inv, sheafCongrPrecoherent_unitIso_hom_app_val_app, OrderHom.equivalenceFunctor_inverse_obj, TwoP.swapEquiv_inverse_map_hom_toFun, cancel_counitInv_right_assoc', CategoryTheory.piEquivalenceFunctorDiscrete_inverse_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.Join.opEquiv_inverse_map_edge_op, symm_counitIso, commAlgCatEquivUnder_inverse_map, CategoryTheory.Discrete.productEquiv_inverse_obj_as, AlgebraicTopology.DoldKan.Compatibility.τ₁_hom_app, unit_app_comp_inverse_map_η_functor, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, CategoryTheory.Limits.Cocone.equivStructuredArrow_inverse, PartOrd.dualEquiv_inverse, CategoryTheory.Mat_.equivalenceSelfOfHasFiniteBiproducts_inverse, CategoryTheory.equivToOverUnit_inverse, functor_map_μ_inverse_comp_counit_app_tensor_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, IsTriangulated.instIsTriangulatedInverseSymmOfFunctor, Action.whiskerLeft_hom, changeFunctor_inverse, core_unitIso_hom_app_iso_hom, symmEquiv_inverse, inverse_additive, NonemptyFinLinOrd.dualEquiv_inverse, sheafCongrPreregular_inverse_obj_val_obj, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, rightOp_unitIso_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_map_app_fst, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.prodOpEquiv_inverse_obj, CategoryTheory.equivEssImageOfReflective_inverse, CategoryTheory.Idempotents.functorExtension_obj_map, unit_app_inverse, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_π, CategoryTheory.Functor.inv_fun_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Functor.flipping_inverse_map_app_app, CategoryTheory.Comma.mapRightIso_inverse_obj_hom, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.Idempotents.karoubiUniversal₁_inverse, CategoryTheory.Discrete.sumEquiv_inverse_obj, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, Types.monoOverEquivalenceSet_inverse_obj, SimplicialObject.opEquivalence_inverse, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, Rep.homEquiv_symm_apply_hom, counitInv_naturality, CategoryTheory.Comma.opEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence₁_inverse, unit_inverse_comp, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.coalgebraEquivOver_inverse, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, commBialgCatEquivComonCommAlgCat_inverse_obj, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.Iso.inverseCompIso_inv_app, CategoryTheory.Comma.equivProd_inverse_obj_left, CategoryTheory.eq_inverse_map, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, sheafCongr_inverse, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CategoryTheory.StructuredArrow.prodEquivalence_inverse, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, Action.resEquiv_inverse, CategoryTheory.Discrete.opposite_inverse_obj, CategoryTheory.ShiftedHom.opEquiv_symm_apply, HomologicalComplex.opEquivalence_inverse, CategoryTheory.effectiveEpiFamilyStructOfEquivalence_aux, CategoryTheory.Limits.Cocones.precomposeEquivalence_inverse, CategoryTheory.Limits.cospanOp_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, unit_app_comp_inverse_map_η_functor_assoc, Rep.ihom_coev_app_hom, CategoryTheory.simplicialCosimplicialAugmentedEquiv_inverse, BddLat.dualEquiv_inverse, leftOp_counitIso_hom_app, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, functor_map_μ_inverse_comp_counit_app_tensor, CategoryTheory.Mon.limit_mon_one, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, mapCommGrp_counitIso, CategoryTheory.MonoidalOpposite.mopEquiv_inverse, CategoryTheory.MorphismProperty.inverseImage_equivalence_functor_eq_map_inverse, CategoryTheory.Under.opEquivOpOver_inverse_obj, Action.rightUnitor_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, core_counitIso_inv_app_iso_hom, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_obj, partialFunEquivPointed_inverse_map_Dom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, CategoryTheory.Over.iteratedSliceEquiv_inverse, CategoryTheory.StructuredArrow.mapIso_inverse_obj_left, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Discrete.equivOfEquivalence_symm_apply, unop_inverse, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CategoryTheory.Under.equivalenceOfIsInitial_inverse_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_inverse, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.ShrinkHoms.equivalence_inverse, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Pi.equivalenceOfEquiv_inverse, preregular_isSheaf_iff_of_essentiallySmall, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, Action.associator_inv_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, CategoryTheory.regularTopology.equalizerCondition_iff_of_equivalence, partialFunEquivPointed_inverse_map_get_coe, CategoryTheory.ShortComplex.functorEquivalence_inverse, CategoryTheory.WithTerminal.liftFromOver_map_app, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, CategoryTheory.cosimplicialSimplicialEquiv_inverse_map, inverseFunctorObjIso_hom, toOrderIso_symm_apply, HomologicalComplex.unopEquivalence_inverse, SimplexCategory.revEquivalence_inverse, congrLeft_inverse, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, inverseFunctorObj'_inv_app, CategoryTheory.Under.equivalenceOfIsInitial_inverse_obj, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_obj_unmop_unmop, symmEquivInverse_obj_unitIso_inv, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.MonoOver.mapIso_inverse, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_inverse, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_snd, congrRight_inverse, CategoryTheory.Sum.functorEquiv_inverse_obj, CategoryTheory.Comma.mapLeftIso_inverse_map_left, CategoryTheory.MonoOver.congr_counitIso, AddCommMonCat.equivalence_inverse_map, CategoryTheory.Functor.flipping_inverse_obj_obj_obj, op_unitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Discrete.equivalence_inverse, CategoryTheory.CatCommSq.hInv_iso_hom_app, op_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.Subobject.lowerEquivalence_inverse, isRightAdjoint_inverse, CategoryTheory.orderDualEquivalence_inverse_obj, leftOp_inverse_obj, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, changeInverse_unitIso_hom_app, Action.rightUnitor_inv_hom, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, congrRight_unitIso_hom_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.Monoidal.transportStruct_whiskerLeft, CategoryTheory.Functor.equiv_inverse, ε_comp_map_ε_assoc, core_unitIso_inv_app_iso_hom, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, CategoryTheory.WithInitial.opEquiv_inverse_map, sheafCongr.functor_obj_val_obj, FinBddDistLat.dualEquiv_inverse, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, CategoryTheory.Pretriangulated.triangleRotation_inverse, CategoryTheory.HasExactLimitsOfShape.of_codomain_equivalence, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Limits.opParallelPairIso_inv_app_zero, trans_unitIso, CategoryTheory.Under.postEquiv_unitIso, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.ObjectProperty.topEquivalence_inverse, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, CategoryTheory.Limits.opParallelPairIso_inv_app_one, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, full_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_obj_val, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_functor, funInvIdAssoc_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_fst, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, symmEquivInverse_obj_inverse, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, trans_inverse, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_obj, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_inverse, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_obj, op_counitIso, CategoryTheory.Comon.monoidal_tensorHom_hom, mapHomologicalComplex_inverse, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, toAdjunction_unit, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, core_unitIso_inv_app_iso_inv, LinOrd.dualEquiv_inverse, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, counitInv_naturality_assoc, CategoryTheory.Comma.toIdPUnitEquiv_inverse_obj_right, CategoryTheory.Idempotents.DoldKan.N_map, CategoryTheory.Comma.mapRightIso_inverse_obj_left, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.comonEquiv_inverse, instIsDenseSubsiteCoherentTopologyInverse, CategoryTheory.Comma.mapRightIso_inverse_map_left, counit_app_functor, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Discrete.productEquiv_inverse_map, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, mapAction_inverse, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, CategoryTheory.ULift.equivalence_inverse, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, inverse_counitInv_comp, CategoryTheory.orderDualEquivalence_inverse_map, IsTriangulated.instIsTriangulatedInverse, core_counitIso_inv_app_iso_inv, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cones.postcomposeEquivalence_inverse, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Final.coconesEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, unit_inverse_comp_assoc, symm_inverse, congrRight_counitIso_inv_app, counit_naturality, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_inverse, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_inverse, Action.leftUnitor_hom_hom, commGroupAddCommGroupEquivalence_inverse, DistLat.dualEquiv_inverse, congrRight_counitIso_hom_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_inverse, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Limits.walkingParallelPairOpEquiv_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_map, trans_toAdjunction, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_right, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, changeFunctor_counitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, congrRight_unitIso_inv_app, BddOrd.dualEquiv_inverse, functor_unit_comp_assoc, additive_inverse_of_FullyFaithful, CategoryTheory.Functor.currying_inverse_map_app_app, CategoryTheory.WithTerminal.opEquiv_inverse_map, symmEquivInverse_map_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, essSurj_inverse, prod_inverse, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, MonObj.mopEquiv_inverse_obj_mon_mul, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_inv_app_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_left, CategoryTheory.Functor.currying_inverse_obj_map_app
mk 📖CompOp
mkHom 📖CompOp
12 mathmath: mkHom_id_inverse, symmEquivFunctor_map, mkIso_hom, congrLeftFunctor_map, mkHom_asNatTrans, mkHom_id_functor, mkHom_comp, mkIso_inv, asNatTrans_mkHom, mkHom_comp_assoc, congrRightFunctor_map, symmEquivInverse_map_app
mkIso 📖CompOp
2 mathmath: mkIso_hom, mkIso_inv
pow 📖CompOp
powNat 📖CompOp
refl 📖CompOp
15 mathmath: CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CommShift.instRefl, refl_inverse, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, refl_functor, refl_counitIso, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, refl_toAdjunction, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, pow_zero, isMonoidal_refl, refl_unitIso, IsTriangulated.refl, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst
trans 📖CompOp
23 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CommShift.instTrans, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, isMonoidal_trans, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, IsTriangulated.trans, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, trans_counitIso, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, trans_functor, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, trans_unitIso, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, trans_inverse, trans_toAdjunction
unit 📖CompOp
38 mathmath: CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, symm_unit, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, cancel_unit_right, functor_unit_comp, inv_fun_map, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, cancel_unit_right_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, Equivalence_mk'_unit, cancel_unit_right_assoc', inv_fun_map_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, counitInv_app_functor, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, ε_comp_map_ε, unit_naturality_assoc, unit_app_tensor_comp_inverse_map_δ_functor_assoc, unit_naturality, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, unit_app_comp_inverse_map_η_functor, unit_app_inverse, CategoryTheory.Functor.inv_fun_map, unit_inverse_comp, unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, ε_comp_map_ε_assoc, funInvIdAssoc_inv_app, toAdjunction_unit, unit_app_tensor_comp_inverse_map_δ_functor, unit_inverse_comp_assoc, functor_unit_comp_assoc
unitInv 📖CompOp
26 mathmath: CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, unitInv_naturality, inv_fun_map, funInvIdAssoc_hom_app, counitInv_functor_comp, unitInv_naturality_assoc, cancel_unitInv_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, unitInv_app_inverse, symm_counit, inv_fun_map_assoc, inverse_counitInv_comp_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, counitInv_functor_comp_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.Sieve.mem_functorPushforward_functor, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.Functor.inv_fun_map, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, Equivalence_mk'_unitInv, counit_app_functor, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, inverse_counitInv_comp, symmEquivInverse_map_app
unitIso 📖CompOp
390 mathmath: CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, leftOp_unitIso_hom_app, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.comonEquiv_unitIso, CategoryTheory.equivOfTensorIsoUnit_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.equivEssImageOfReflective_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.Discrete.sumEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.orderDualEquivalence_unitIso, AddCommMonCat.equivalence_unitIso, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, partialFunEquivPointed_unitIso_hom_app, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.CatCommSq.hInv_iso_inv_app, leftOp_unitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_eq, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_unitIso_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, Action.functorCategoryEquivalence_unitIso, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, HomologicalComplex₂.flipEquivalence_unitIso, CategoryTheory.MonoOver.mapIso_unitIso, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_unitIso, partialFunEquivPointed_unitIso_inv_app, CategoryTheory.Functor.Final.coconesEquiv_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Monad.algebraEquivOfIsoMonads_unitIso, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.Over.opEquivOpUnder_unitIso, core_unitIso_hom_app_iso_inv, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, SimplexCategory.revEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, CategoryTheory.TwoSquare.equivalenceJ_unitIso, CategoryTheory.Square.flipEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_right, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_inv_app_app_fst, HomologicalComplex.opEquivalence_unitIso, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_inv_app, FinPartOrd.dualEquiv_unitIso, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_eq, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, symm_unitIso, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, mapHomologicalComplex_unitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_unitIso, CategoryTheory.Discrete.equivalence_unitIso, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.StructuredArrow.preEquivalence_unitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Limits.Cocones.precomposeEquivalence_unitIso, CategoryTheory.Comma.equivProd_unitIso_hom_app_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.Prod.braiding_unitIso, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, CategoryTheory.skeletonEquivalence_unitIso, CategoryTheory.prodOpEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, CategoryTheory.ObjectProperty.fullSubcategoryCongr_unitIso, changeFunctor_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_unitIso, CategoryTheory.prod.associativity_unitIso, CategoryTheory.StructuredArrow.prodEquivalence_unitIso, CategoryTheory.ObjectProperty.topEquivalence_unitIso, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, Bipointed.swapEquiv_unitIso_inv_app_toFun, symmEquivInverse_obj_counitIso_hom, CategoryTheory.AsSmall.equiv_unitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.ForgetEnrichment.equiv_unitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, MulEquiv.toSingleObjEquiv_unitIso_hom, mapMon_unitIso, pi_unitIso, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_inv_app, CategoryTheory.MonoidalOpposite.mopEquiv_unitIso, CategoryTheory.typeEquiv_unitIso_hom_app, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Pi.optionEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.ULift.equivalence_unitIso_inv, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, rightOp_unitIso_hom_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.GradedObject.comapEquiv_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.triangleRotation_unitIso, CategoryTheory.Iso.compInverseIso_inv_app, CategoryTheory.Cat.opEquivalence_unitIso, CategoryTheory.Comma.equivProd_unitIso_hom_app_right, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, CategoryTheory.Discrete.sumEquiv_unitIso_hom_app, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.typeEquiv_unitIso_inv_app, TwoP.swapEquiv_unitIso_hom_app_hom_toFun, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.forgetEnrichmentOppositeEquivalence_unitIso, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_unitIso, CategoryTheory.Adjunction.toEquivalence_unitIso_hom_app, CategoryTheory.piEquivalenceFunctorDiscrete_unitIso, CategoryTheory.sheafBotEquivalence_unitIso, TopologicalSpace.Opens.mapMapIso_unitIso, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_right, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_left, mapCommGrp_unitIso, CategoryTheory.Limits.Cones.postcomposeEquivalence_unitIso, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Iso.compInverseIso_hom_app, CategoryTheory.Adjunction.toEquivalence_unitIso_inv_app, HomologicalComplex.unopEquivalence_unitIso, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.Limits.Cocone.equivStructuredArrow_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, congrFullSubcategory_unitIso, mapCommMon_unitIso, changeInverse_unitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, MulEquiv.toSingleObjEquiv_unitIso_inv, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.functorProdFunctorEquiv_unitIso, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, CategoryTheory.ULift.equivalence_unitIso_hom, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_unitIso, CategoryTheory.prodOpEquiv_unitIso_inv_app, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_unitIso, sheafCongr.unitIso_hom_app_val_app, ModuleCat.matrixEquivalence_unitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.CostructuredArrow.prodEquivalence_unitIso, congrLeft_unitIso_inv_app, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_unitIso, mapGrp_unitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_hom_app_app_snd, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_inv_app, congrLeft_unitIso_hom_app, ext_iff, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, symmEquivInverse_obj_counitIso_inv, CoalgCat.comonEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, changeFunctor_unitIso_inv_app, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.Functor.flipping_unitIso_hom_app_app_app, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, CategoryTheory.Functor.equiv_unitIso, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Comon.Comon_EquivMon_OpOp_unitIso, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, CategoryTheory.opOpEquivalence_unitIso, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Functor.flipping_unitIso_inv_app_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.MonoOver.congr_inverse, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_unitIso, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, commAlgCatEquivUnder_unitIso, induced_unitIso, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.algebraEquivUnder_unitIso, sheafCongrPrecoherent_unitIso_inv_app_val_app, SimplicialObject.opEquivalence_unitIso, CategoryTheory.Over.iteratedSliceEquiv_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_left, CategoryTheory.WithInitial.equivComma_unitIso_inv_app_app, CategoryTheory.prod.rightUnitorEquivalence_unitIso, symmEquiv_unitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.Functor.currying_unitIso_inv_app_app_app, CategoryTheory.Functor.currying_unitIso_hom_app_app_app, SSet.opEquivalence_unitIso, alexDiscEquivPreord_unitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_right, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_inv_app_app_snd, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Comma.opEquiv_unitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Under.postEquiv_inverse, CategoryTheory.Functor.opUnopEquiv_unitIso, CategoryTheory.Presheaf.coherentExtensiveEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, OrderHom.equivalenceFunctor_unitIso_hom_app, CategoryTheory.WithInitial.equivComma_unitIso_hom_app_app, CategoryTheory.prod.leftUnitorEquivalence_unitIso, CategoryTheory.shiftEquiv'_unitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, groupAddGroupEquivalence_unitIso, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_unitIso, unit_app_tensor_comp_inverse_map_δ_functor_assoc, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, CategoryTheory.Subobject.lowerEquivalence_unitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Comma.equivProd_unitIso_inv_app_right, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, sheafCongrPrecoherent_unitIso_hom_app_val_app, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, symm_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, CategoryTheory.eq_unitIso, core_unitIso_hom_app_iso_hom, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, rightOp_unitIso_inv_app, commGroupAddCommGroupEquivalence_unitIso, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.Idempotents.karoubiUniversal₁_unitIso, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Square.arrowArrowEquivalence'_unitIso, CategoryTheory.ShortComplex.functorEquivalence_unitIso, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_unitIso, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_unitIso, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, CategoryTheory.ShiftedHom.opEquiv_symm_apply, AddMonCat.equivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_unitIso, CategoryTheory.coalgebraEquivOver_unitIso, CategoryTheory.Limits.Cone.equivCostructuredArrow_unitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.MonoidalCategory.DayFunctor.equiv_unitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_hom_app, refl_unitIso, symmEquivInverse_obj_unitIso_inv, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.MonoOver.congr_counitIso, op_unitIso, CategoryTheory.Groupoid.invEquivalence_unitIso, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.ShortComplex.opEquiv_unitIso, MonObj.mopEquiv_unitIso_inv_app_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, changeInverse_unitIso_hom_app, Bipointed.swapEquiv_unitIso_hom_app_toFun, CategoryTheory.Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, congrRight_unitIso_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, OrderHom.equivalenceFunctor_unitIso_inv_app, CategoryTheory.Under.opEquivOpOver_unitIso, core_unitIso_inv_app_iso_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_hom_app_app_fst, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Square.arrowArrowEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_eq, trans_unitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, CategoryTheory.Under.postEquiv_unitIso, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.Comma.equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.ShrinkHoms.equivalence_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, core_unitIso_inv_app_iso_inv, sheafCongr_unitIso, CategoryTheory.WithTerminal.equivComma_unitIso_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, OrderIso.equivalence_unitIso, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.WithTerminal.equivComma_unitIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.RelCat.opEquivalence_unitIso, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_right, TwoP.swapEquiv_unitIso_inv_app_hom_toFun, congrRight_unitIso_inv_app, CategoryTheory.Idempotents.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
Equivalence_mk'_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.id
counit
mk'
Equivalence_mk'_counitInv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.id
counitInv
mk'
CategoryTheory.Iso.inv
Equivalence_mk'_unit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.id
unit
mk'
Equivalence_mk'_unitInv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.id
unitInv
mk'
CategoryTheory.Iso.inv
adjointify_η_ε 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
adjointifyη
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
adjointify_η_ε_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
adjointifyη
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
adjointify_η_ε
asNatTrans_mkHom 📖mathematicalasNatTrans
mkHom
cancel_counitInv_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
counitInv
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.inv_app_isIso
cancel_counitInv_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
counitInv
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.inv_app_isIso
cancel_counitInv_right_assoc' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
counitInv
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.inv_app_isIso
cancel_counit_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.hom_app_isIso
cancel_unitInv_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
unitInv
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.inv_app_isIso
cancel_unit_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.hom_app_isIso
cancel_unit_right_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.hom_app_isIso
cancel_unit_right_assoc' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.hom_app_isIso
changeFunctor_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
changeFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Iso.inv
changeFunctor_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
changeFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Iso.hom
changeFunctor_functor 📖mathematicalfunctor
changeFunctor
changeFunctor_inverse 📖mathematicalinverse
changeFunctor
changeFunctor_refl 📖mathematicalchangeFunctor
functor
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
ext
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
changeFunctor_trans 📖mathematicalchangeFunctor
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
ext
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
changeFunctor_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
changeFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.map
changeFunctor_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
changeFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.map
changeInverse_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
changeInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
changeInverse_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
changeInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
changeInverse_functor 📖mathematicalfunctor
changeInverse
changeInverse_inverse 📖mathematicalinverse
changeInverse
changeInverse_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
changeInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
changeInverse_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
changeInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
comp_asNatTrans 📖mathematicalasNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Equivalence
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
comp_asNatTrans_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
asNatTrans
CategoryTheory.Equivalence
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_asNatTrans
congrLeft_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
counitIso
congrLeft
invFunIdAssoc
congrLeft_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
functor
inverse
CategoryTheory.Iso.inv
counitIso
congrLeft
invFunIdAssoc
congrLeft_functor 📖mathematicalfunctor
CategoryTheory.Functor
CategoryTheory.Functor.category
congrLeft
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
inverse
congrLeft_inverse 📖mathematicalinverse
CategoryTheory.Functor
CategoryTheory.Functor.category
congrLeft
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
functor
congrLeft_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
inverse
functor
CategoryTheory.Iso.hom
unitIso
congrLeft
CategoryTheory.Iso.inv
funInvIdAssoc
congrLeft_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
unitIso
congrLeft
CategoryTheory.Iso.hom
funInvIdAssoc
congrRightFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Equivalence
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
congrRightFunctor
mkHom
congrRight
CategoryTheory.Functor.whiskeringRight
functor
asNatTrans
congrRightFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
congrRightFunctor
congrRight
congrRight_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
counitIso
congrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.rightUnitor
congrRight_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
inverse
functor
CategoryTheory.Iso.inv
counitIso
congrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.associator
CategoryTheory.Category.assoc
congrRight_functor 📖mathematicalfunctor
CategoryTheory.Functor
CategoryTheory.Functor.category
congrRight
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
congrRight_inverse 📖mathematicalinverse
CategoryTheory.Functor
CategoryTheory.Functor.category
congrRight
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
congrRight_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
functor
inverse
CategoryTheory.Iso.hom
unitIso
congrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.associator
congrRight_unitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
unitIso
congrRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor.rightUnitor
CategoryTheory.Category.assoc
counitInv_app_functor 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
functor
counitInv
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
unit
CategoryTheory.Iso.app_inv
CategoryTheory.Iso.comp_hom_eq_id
CategoryTheory.Iso.app_hom
functor_unit_comp
counitInv_functor_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
functor
CategoryTheory.Functor.comp
inverse
CategoryTheory.NatTrans.app
counitInv
CategoryTheory.Functor.map
unitInv
CategoryTheory.CategoryStruct.id
functor_unit_comp
CategoryTheory.Iso.inv_eq_inv
counitInv_functor_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
CategoryTheory.Functor.map
unitInv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
counitInv_functor_comp
counitInv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.NatTrans.app
counitInv
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
counitInv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counitInv_naturality
counit_app_functor 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
unitInv
functor_unit_comp
CategoryTheory.Iso.hom_comp_eq_id
counit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
counit
CategoryTheory.NatTrans.naturality
counit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counit_naturality
essSurjInducedFunctor 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.InducedCategory
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.InducedCategory.instCategory
CategoryTheory.inducedFunctor
Equiv.apply_symm_apply
essSurj_functor 📖mathematicalCategoryTheory.Functor.EssSurj
functor
essSurj_inverse 📖mathematicalCategoryTheory.Functor.EssSurj
inverse
essSurj_functor
ext 📖functor
inverse
CategoryTheory.Iso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unitIso
counitIso
ext_iff 📖mathematicalfunctor
inverse
CategoryTheory.Iso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unitIso
counitIso
ext
faithful_functor 📖mathematicalCategoryTheory.Functor.Faithful
functor
CategoryTheory.Functor.FullyFaithful.faithful
faithful_inverse 📖mathematicalCategoryTheory.Functor.Faithful
inverse
CategoryTheory.Functor.FullyFaithful.faithful
full_functor 📖mathematicalCategoryTheory.Functor.Full
functor
CategoryTheory.Functor.FullyFaithful.full
full_inverse 📖mathematicalCategoryTheory.Functor.Full
inverse
CategoryTheory.Functor.FullyFaithful.full
fullyFaithfulToEssImage 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.Faithful.toEssImage
CategoryTheory.Functor.Full.toEssImage
CategoryTheory.Functor.EssSurj.toEssImage
funInvIdAssoc_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
funInvIdAssoc
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
unitInv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
funInvIdAssoc_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
funInvIdAssoc
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
unit
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
fun_inv_map 📖mathematicalCategoryTheory.Functor.map
functor
CategoryTheory.Functor.obj
inverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
counitInv
CategoryTheory.NatIso.naturality_2
fun_inv_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
counitInv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fun_inv_map
functorFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Equivalence
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functorFunctor
asNatTrans
functorFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functorFunctor
functor
functor_unitIso_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
counitIso
CategoryTheory.CategoryStruct.id
functor_unit_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
unit
counit
CategoryTheory.CategoryStruct.id
functor_unitIso_comp
functor_unit_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
functor
inverse
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
counit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
functor_unit_comp
hom_ext 📖asNatTrans
hom_ext_iff 📖mathematicalasNatTranshom_ext
id_asNatTrans 📖mathematicalasNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Equivalence
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
inducedFunctorOfEquiv 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.InducedCategory
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.InducedCategory.instCategory
CategoryTheory.inducedFunctor
CategoryTheory.InducedCategory.faithful
CategoryTheory.InducedCategory.full
essSurjInducedFunctor
invFunIdAssoc_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
invFunIdAssoc
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
counit
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
invFunIdAssoc_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
invFunIdAssoc
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
counitInv
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
inv_fun_map 📖mathematicalCategoryTheory.Functor.map
inverse
CategoryTheory.Functor.obj
functor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
unitInv
unit
CategoryTheory.NatIso.naturality_1
inv_fun_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
unitInv
unit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inv_fun_map
inverse_counitInv_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
counitInv
unitInv
CategoryTheory.CategoryStruct.id
unit_inverse_comp
CategoryTheory.Iso.inv_eq_inv
inverse_counitInv_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
unitInv
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inverse_counitInv_comp
isEquivalence_functor 📖mathematicalCategoryTheory.Functor.IsEquivalence
functor
faithful_functor
full_functor
essSurj_functor
isEquivalence_inverse 📖mathematicalCategoryTheory.Functor.IsEquivalence
inverse
isEquivalence_functor
mkHom_asNatTrans 📖mathematicalmkHom
asNatTrans
mkHom_comp 📖mathematicalmkHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
CategoryTheory.Equivalence
instCategory
mkHom_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Equivalence
CategoryTheory.Category.toCategoryStruct
instCategory
mkHom
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mkHom_comp
mkHom_id_functor 📖mathematicalmkHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
CategoryTheory.Equivalence
instCategory
mkHom_id_inverse 📖mathematicalmkHom
symm
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
inverse
CategoryTheory.Equivalence
instCategory
mkIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Equivalence
instCategory
mkIso
mkHom
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
mkIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Equivalence
instCategory
mkIso
mkHom
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
pow_neg_one 📖mathematicalCategoryTheory.Equivalence
instPowInt
symm
pow_one 📖mathematicalCategoryTheory.Equivalence
instPowInt
pow_zero 📖mathematicalCategoryTheory.Equivalence
instPowInt
refl
refl_counitIso 📖mathematicalcounitIso
refl
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
refl_functor 📖mathematicalfunctor
refl
CategoryTheory.Functor.id
refl_inverse 📖mathematicalinverse
refl
CategoryTheory.Functor.id
refl_unitIso 📖mathematicalunitIso
refl
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
symm_counit 📖mathematicalcounit
symm
unitInv
symm_counitIso 📖mathematicalcounitIso
symm
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
unitIso
symm_functor 📖mathematicalfunctor
symm
inverse
symm_inverse 📖mathematicalinverse
symm
functor
symm_unit 📖mathematicalunit
symm
counitInv
symm_unitIso 📖mathematicalunitIso
symm
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Functor.id
counitIso
trans_counitIso 📖mathematicalcounitIso
trans
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.rightUnitor
trans_functor 📖mathematicalfunctor
trans
CategoryTheory.Functor.comp
trans_inverse 📖mathematicalinverse
trans
CategoryTheory.Functor.comp
trans_unitIso 📖mathematicalunitIso
trans
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Iso.symm
CategoryTheory.Functor.rightUnitor
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.associator
unitInv_app_inverse 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.id
unitInv
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
counit
CategoryTheory.Iso.app_inv
CategoryTheory.Iso.app_hom
CategoryTheory.Functor.mapIso_hom
CategoryTheory.Iso.hom_eq_inv
unit_app_inverse
unitInv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
unitInv
CategoryTheory.NatTrans.naturality
unitInv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
unitInv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unitInv_naturality
unit_app_inverse 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
unit
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
counitInv
unit_inverse_comp
CategoryTheory.Iso.comp_hom_eq_id
unit_inverse_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
inverse
CategoryTheory.Functor.comp
functor
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
counit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
counitInv_functor_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Iso.app_hom
CategoryTheory.Iso.app_inv
CategoryTheory.Category.assoc
unit_naturality
counit_naturality
CategoryTheory.Iso.hom_inv_id_app
counitInv_naturality
unitInv_naturality
unit_inverse_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
counit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
unit_inverse_comp
unit_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.NatTrans.naturality
unit_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_naturality

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsEquivalence 📖CompData
116 mathmath: CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.LocalizerMorphism.isEquivalence, CategoryTheory.instIsEquivalenceOppositeUnopUnop, Action.instIsEquivalenceFunctorSingleObjInverse, CategoryTheory.CoreSmallCategoryOfSet.instIsEquivalenceElemObjSmallCategoryOfSetFunctor, CategoryTheory.Equivalence.isEquivalence_inverse, IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, CategoryTheory.Idempotents.toKaroubi_isEquivalence, CategoryTheory.Prod.swapIsEquivalence, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtension₂, CategoryTheory.ComonadicLeftAdjoint.eqv, isEquivalence_of_comp_left, CategoryTheory.Localization.instIsEquivalenceLocalizationLift, CategoryTheory.CostructuredArrow.isEquivalence_pre, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, CategoryTheory.Over.instIsEquivalenceObjPost, CategoryTheory.ThinSkeleton.fromThinSkeleton_isEquivalence, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.CostructuredArrow.isEquivalenceMap₂, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatOpRightOpΓ, isEquivalence_trans, CategoryTheory.Join.isEquivalenceMapPair, AlgebraicGeometry.AffineScheme.instIsEquivalenceOppositeCommRingCatRightOpΓ, CategoryTheory.prod.associatorIsEquivalence, instIsEquivalenceFGModuleCatUlift, ModuleCat.restrictScalars_isEquivalence_of_ringEquiv, CategoryTheory.fromSkeleton.isEquivalence, CategoryTheory.LocalizerMorphism.localizedFunctor_isEquivalence, CategoryTheory.prod.inverseAssociatorIsEquivalence, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiFunctorExtension, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.StructuredArrow.isEquivalence_pre, instIsEquivalenceUliftFunctorOfUnivLE, isEquivalence_of_isRightAdjoint, compactumToCompHaus.isEquivalence, CategoryTheory.RelCat.instIsEquivalenceOppositeUnopFunctor, FintypeCat.Skeleton.instIsEquivalenceIncl, isEquivalence_of_iso, CategoryTheory.Under.instIsEquivalenceMapOfIsIso, instIsEquivalenceRightExtensionPostcomp₁OfIsIso, CategoryTheory.sum.associatorIsEquivalence, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctor_isEquivalence, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.LocalizerMorphism.isEquivalence_imp, CategoryTheory.sum.inverseAssociatorIsEquivalence, instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, CategoryTheory.StructuredArrow.isEquivalence_toUnder, Action.instIsEquivalenceFunctorSingleObjFunctor, CategoryTheory.Comma.isEquivalence_post, CategoryTheory.instIsEquivalenceOppositeOpOp, CategoryTheory.Types.instIsEquivalenceForgetTypeHom, isEquivalence_refl, CategoryTheory.Comma.isEquivalenceMap, CategoryTheory.Comma.isEquivalence_preLeft, CategoryTheory.Localization.instIsEquivalenceFunctorFunctorsInvertingWhiskeringLeftFunctor, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.StructuredArrow.isEquivalenceMap₂, CategoryTheory.StructuredArrow.isEquivalence_post, SimplexCategory.SkeletalFunctor.isEquivalence, FGModuleRepr.instIsEquivalenceFGModuleCatEmbed, isEquivalence_iff_of_iso, CategoryTheory.Subobject.instIsEquivalenceMonoOverRepresentative, instIsEquivalenceOppositeOp, CategoryTheory.prod.rightUnitor_isEquivalence, instIsEquivalenceObjWhiskeringLeft, CategoryTheory.Over.instIsEquivalenceMapOfIsIso, CategoryTheory.Adjunction.isEquivalence_right_of_isEquivalence_left, FintypeCat.instIsEquivalenceUSwitch, instIsEquivalenceLeftExtensionCompPrecomp, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, HasFibers.equiv, isEquivalence_mapArrow, CategoryTheory.Sum.Swap.isEquivalence, CategoryTheory.instIsEquivalenceDecomposedDecomposedTo, CategoryTheory.Equivalence.isEquivalence_functor, CategoryTheory.LocalizerMorphism.IsLocalizedEquivalence.isEquivalence, CategoryTheory.instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison, CategoryTheory.Under.instIsEquivalenceObjPost, CategoryTheory.ObjectProperty.instIsEquivalenceFullSubcategoryIsoClosureιOfLE, instIsEquivalenceObjWhiskeringRight, CategoryTheory.ShrinkHoms.instIsEquivalenceInverse, CategoryTheory.prod.leftUnitor_isEquivalence, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Adjunction.isEquivalence_left_of_isEquivalence_right, instIsEquivalenceLightDiagram'LightDiagramToLightFunctor, CategoryTheory.Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, HasFibers.instIsEquivalenceFibFiberInducedFunctor, CategoryTheory.Comma.isEquivalence_preRight, isEquivalence_inv, instIsEquivalenceOppositeLeftOp, CategoryTheory.IsSkeletonOf.eqv, IsEquivalence.mk', CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.instIsEquivalenceShiftFunctor, localCohomology.SelfLERadical.cast_isEquivalence, CategoryTheory.MonadicRightAdjoint.eqv, CategoryTheory.Equivalence.fullyFaithfulToEssImage, instIsEquivalenceOppositeRightOp, CategoryTheory.ShrinkHoms.instIsEquivalenceFunctor, CategoryTheory.CostructuredArrow.isEquivalence_toOver, IsLocalization.isEquivalence, CategoryTheory.LocalizerMorphism.isEquivalence_iff, CategoryTheory.instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, CategoryTheory.RelCat.instIsEquivalenceOppositeOpFunctor, ModuleCat.forget₂AddCommGroupIsEquivalence, CategoryTheory.ObjectProperty.isEquivalence_ιOfLE_iff, isEquivalence_of_comp_right, CategoryTheory.CostructuredArrow.isEquivalence_post, CategoryTheory.Equivalence.inducedFunctorOfEquiv, AlgebraicGeometry.AffineScheme.ΓIsEquiv, CategoryTheory.Pretriangulated.instIsEquivalenceTriangleInvRotate, CategoryTheory.Localization.isEquivalence, CategoryTheory.Pretriangulated.instIsEquivalenceTriangleRotate, instIsEquivalenceRightExtensionCompPrecomp
asEquivalence 📖CompOp
3 mathmath: asEquivalence_functor, fun_inv_map, inv_fun_map
inv 📖CompOp
3 mathmath: fun_inv_map, isEquivalence_inv, inv_fun_map

Theorems

NameKindAssumesProvesValidatesDepends On
asEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
asEquivalence
fun_inv_map 📖mathematicalmap
obj
inv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
CategoryTheory.Equivalence.inverse
asEquivalence
CategoryTheory.Equivalence.functor
id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counit
CategoryTheory.Equivalence.counitInv
CategoryTheory.NatIso.naturality_2
instIsEquivalenceObjWhiskeringLeft 📖mathematicalIsEquivalence
CategoryTheory.Functor
category
obj
whiskeringLeft
CategoryTheory.Equivalence.isEquivalence_inverse
instIsEquivalenceObjWhiskeringRight 📖mathematicalIsEquivalence
CategoryTheory.Functor
category
obj
whiskeringRight
CategoryTheory.Equivalence.isEquivalence_functor
inv_fun_map 📖mathematicalmap
inv
obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
CategoryTheory.Equivalence.functor
asEquivalence
CategoryTheory.Equivalence.inverse
id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitInv
CategoryTheory.Equivalence.unit
CategoryTheory.NatIso.naturality_1
isEquivalence_iff_of_iso 📖mathematicalIsEquivalenceisEquivalence_of_iso
isEquivalence_inv 📖mathematicalIsEquivalence
inv
CategoryTheory.Equivalence.isEquivalence_functor
isEquivalence_of_comp_left 📖mathematicalIsEquivalenceisEquivalence_iff_of_iso
CategoryTheory.Equivalence.isEquivalence_functor
isEquivalence_of_comp_right 📖mathematicalIsEquivalenceisEquivalence_iff_of_iso
CategoryTheory.Equivalence.isEquivalence_functor
isEquivalence_of_iso 📖mathematicalIsEquivalenceCategoryTheory.Equivalence.isEquivalence_functor
isEquivalence_refl 📖mathematicalIsEquivalence
id
CategoryTheory.Equivalence.isEquivalence_functor
isEquivalence_trans 📖mathematicalIsEquivalence
comp
Faithful.comp
IsEquivalence.faithful
Full.comp
IsEquivalence.full
essSurj_comp
IsEquivalence.essSurj

CategoryTheory.Functor.IsEquivalence

Theorems

NameKindAssumesProvesValidatesDepends On
essSurj 📖mathematicalCategoryTheory.Functor.EssSurj
faithful 📖mathematicalCategoryTheory.Functor.Faithful
full 📖mathematicalCategoryTheory.Functor.Full
mk' 📖mathematicalCategoryTheory.Functor.IsEquivalenceCategoryTheory.Equivalence.isEquivalence_functor

CategoryTheory.Iso

Definitions

NameCategoryTheorems
compInverseIso 📖CompOp
4 mathmath: CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, compInverseIso_inv_app, compInverseIso_hom_app, CategoryTheory.MonoidalClosed.ofEquiv_curry_def
inverseCompIso 📖CompOp
2 mathmath: inverseCompIso_inv_app, inverseCompIso_hom_app
isoCompInverse 📖CompOp
4 mathmath: CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, isoCompInverse_inv_app, isoCompInverse_hom_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda
isoFunctorOfIsoInverse 📖CompOp
4 mathmath: isoFunctorOfIsoInverse_isoInverseOfIsoFunctor, isoInverseOfIsoFunctor_isoFunctorOfIsoInverse, isoFunctorOfIsoInverse_inv_app, isoFunctorOfIsoInverse_hom_app
isoInverseComp 📖CompOp
2 mathmath: isoInverseComp_inv_app, isoInverseComp_hom_app
isoInverseOfIsoFunctor 📖CompOp
5 mathmath: isoFunctorOfIsoInverse_isoInverseOfIsoFunctor, isoInverseOfIsoFunctor_isoFunctorOfIsoInverse, CategoryTheory.Equivalence.inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, isoInverseOfIsoFunctor_inv_app, isoInverseOfIsoFunctor_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
compInverseIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
compInverseIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
inv
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
compInverseIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
compInverseIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
inverseCompIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inverseCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
inverseCompIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inverseCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
isoCompInverse_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoCompInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
isoCompInverse_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoCompInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.comp_id
isoFunctorOfIsoInverse_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
isoFunctorOfIsoInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.map
CategoryTheory.Equivalence.unitIso
isoCompInverse_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
isoFunctorOfIsoInverse_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.functor
isoFunctorOfIsoInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Equivalence.counitIso
isoCompInverse_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
isoFunctorOfIsoInverse_isoInverseOfIsoFunctor 📖mathematicalisoFunctorOfIsoInverse
isoInverseOfIsoFunctor
ext
CategoryTheory.NatTrans.ext'
isoFunctorOfIsoInverse_hom_app
isoInverseOfIsoFunctor_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Category.assoc
CategoryTheory.Equivalence.counitInv_functor_comp
CategoryTheory.Category.comp_id
inv_hom_id_app_assoc
CategoryTheory.Equivalence.counitInv_functor_comp_assoc
isoInverseComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoInverseComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.id_comp
isoInverseComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoInverseComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
hom
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.comp_id
isoInverseOfIsoFunctor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Equivalence.inverse
hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoInverseOfIsoFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
inv
CategoryTheory.Equivalence.counitIso
isoCompInverse_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
isoInverseOfIsoFunctor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Equivalence.inverse
inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoInverseOfIsoFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.counitIso
hom
CategoryTheory.Equivalence.unitIso
isoCompInverse_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
isoInverseOfIsoFunctor_isoFunctorOfIsoInverse 📖mathematicalisoInverseOfIsoFunctor
isoFunctorOfIsoInverse
isoFunctorOfIsoInverse_isoInverseOfIsoFunctor

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
fullSubcategoryCongr 📖CompOp
4 mathmath: fullSubcategoryCongr_inverse, fullSubcategoryCongr_unitIso, fullSubcategoryCongr_counitIso, fullSubcategoryCongr_functor

Theorems

NameKindAssumesProvesValidatesDepends On
fullSubcategoryCongr_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
FullSubcategory
FullSubcategory.category
fullSubcategoryCongr
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
ιOfLE
fullSubcategoryCongr_functor 📖mathematicalCategoryTheory.Equivalence.functor
FullSubcategory
FullSubcategory.category
fullSubcategoryCongr
ιOfLE
fullSubcategoryCongr_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
FullSubcategory
FullSubcategory.category
fullSubcategoryCongr
ιOfLE
fullSubcategoryCongr_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
FullSubcategory
FullSubcategory.category
fullSubcategoryCongr
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id

---

← Back to Index