| Name | Category | Theorems |
adjointifyη 📖 | CompOp | 2 mathmath: adjointify_η_ε_assoc, adjointify_η_ε
|
asNatTrans 📖 | CompOp | 12 mathmath: comp_asNatTrans, inverseFunctor_map, symmEquivFunctor_map, congrLeftFunctor_map, comp_asNatTrans_assoc, mkHom_asNatTrans, id_asNatTrans, functorFunctor_map, hom_ext_iff, asNatTrans_mkHom, congrRightFunctor_map, symmEquivInverse_map_app
|
changeFunctor 📖 | CompOp | 8 mathmath: changeFunctor_unitIso_hom_app, changeFunctor_trans, changeFunctor_counitIso_hom_app, changeFunctor_refl, changeFunctor_unitIso_inv_app, changeFunctor_functor, changeFunctor_inverse, changeFunctor_counitIso_inv_app
|
changeInverse 📖 | CompOp | 6 mathmath: changeInverse_functor, changeInverse_inverse, changeInverse_counitIso_inv_app, changeInverse_unitIso_inv_app, changeInverse_counitIso_hom_app, changeInverse_unitIso_hom_app
|
congrLeft 📖 | CompOp | 37 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, congrLeft_counitIso_inv_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, congrLeft_functor, CategoryTheory.instIsMonoidalFunctorCongrLeft, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, congrLeftFunctor_obj, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, congrLeft_unitIso_inv_app, congrLeft_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, congrLeftFunctor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, congrLeft_counitIso_hom_app, congrLeft_inverse, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app
|
congrRight 📖 | CompOp | 12 mathmath: congrRight_functor, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_inv_app_app, congrRightFunctor_obj, congrRight_inverse, congrRight_unitIso_hom_app, CategoryTheory.prod.functorProdToProdFunctorAssociator_inv_app, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_hom_app_app, congrRightFunctor_map, congrRight_counitIso_inv_app, CategoryTheory.prod.functorProdToProdFunctorAssociator_hom_app, congrRight_counitIso_hom_app, congrRight_unitIso_inv_app
|
congrRightFunctor 📖 | CompOp | 2 mathmath: congrRightFunctor_obj, congrRightFunctor_map
|
counit 📖 | CompOp | 29 mathmath: cancel_counit_right, functor_unit_comp, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, map_η_comp_η, counit_naturality_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, invFunIdAssoc_hom_app, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Sieve.functorPushforward_inverse, unitInv_app_inverse, CategoryTheory.Sieve.mem_functorPushforward_inverse, toAdjunction_counit, fun_inv_map, CategoryTheory.Functor.fun_inv_map, symm_counit, map_η_comp_η_assoc, functor_map_ε_inverse_comp_counit_app, fun_inv_map_assoc, functor_map_μ_inverse_comp_counit_app_tensor_assoc, unit_inverse_comp, functor_map_μ_inverse_comp_counit_app_tensor, Equivalence_mk'_counit, counit_app_functor, unit_inverse_comp_assoc, counit_naturality, functor_unit_comp_assoc
|
counitInv 📖 | CompOp | 25 mathmath: symm_unit, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, cancel_counitInv_right, counitInv_functor_comp, counitInv_app_comp_functor_map_η_inverse_assoc, cancel_counitInv_right_assoc, invFunIdAssoc_inv_app, counitInv_app_comp_functor_map_η_inverse, fun_inv_map, CategoryTheory.Functor.fun_inv_map, inverse_counitInv_comp_assoc, counitInv_app_functor, counitInv_functor_comp_assoc, fun_inv_map_assoc, cancel_counitInv_right_assoc', unit_app_inverse, counitInv_naturality, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Equivalence_mk'_counitInv, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, counitInv_naturality_assoc, inverse_counitInv_comp, symmEquivInverse_map_app
|
counitIso 📖 | CompOp | 368 mathmath: sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Discrete.sumEquiv_counitIso_inv_app, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.Adjunction.toEquivalence_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, mapGrp_counitIso, CategoryTheory.eq_counitIso, sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Pretriangulated.triangleRotation_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_hom_app_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_eq, counitIso_inv_app_comp_functor_map_η_inverse, partialFunEquivPointed_counitIso_inv_app_toFun, CategoryTheory.equivOfTensorIsoUnit_counitIso, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.Join.mapPairEquiv_counitIso, CategoryTheory.CostructuredArrow.prodEquivalence_counitIso, rightOp_counitIso_inv_app, CategoryTheory.Under.equivalenceOfIsInitial_counitIso, CategoryTheory.CatCommSq.hInv_iso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_counitIso, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_inv_app_hom, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_inv_app_app, CategoryTheory.Over.equivalenceOfIsTerminal_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.ObjectProperty.topEquivalence_counitIso, CategoryTheory.Comon.Comon_EquivMon_OpOp_counitIso, CategoryTheory.Iso.isoInverseComp_inv_app, prod_counitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, leftOp_counitIso_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_left, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_right, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, CategoryTheory.Comma.opEquiv_counitIso, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_counitIso, CategoryTheory.Monad.monadMonEquiv_counitIso_hom_app_hom, congrFullSubcategory_counitIso, commGroupAddCommGroupEquivalence_counitIso, CategoryTheory.GradedObject.comapEquiv_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, CategoryTheory.ShortComplex.functorEquivalence_counitIso, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, CategoryTheory.Functor.currying_counitIso_hom_app_app, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.MonoOver.mapIso_counitIso, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_counitIso_hom_app_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_inv_app_snd_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.Functor.flipping_counitIso_inv_app_app_app, congrLeft_counitIso_inv_app, symm_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, CategoryTheory.Cat.opEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CoalgCat.comonEquivalence_counitIso, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_counitIso, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_hom_app, OrderHom.equivalenceFunctor_counitIso_inv_app_app, CategoryTheory.Functor.Initial.conesEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, Bipointed.swapEquiv_counitIso_hom_app_toFun, AddMonCat.equivalence_counitIso, CategoryTheory.Functor.opUnopEquiv_counitIso, CategoryTheory.Localization.equivalence_counitIso_app, CategoryTheory.Presheaf.coherentExtensiveEquivalence_counitIso, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_counitIso, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, CategoryTheory.prod.associativity_counitIso, CategoryTheory.Comma.equivProd_counitIso_hom_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_inv_app, SimplicialObject.opEquivalence_counitIso, CategoryTheory.Limits.walkingCospanOpEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.Functor.currying_counitIso_inv_app_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, CategoryTheory.AsSmall.equiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_counitIso_inv_app_hom, CategoryTheory.Idempotents.DoldKan.equivalence_counitIso, CategoryTheory.TwoSquare.equivalenceJ_counitIso, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_counitIso_hom_app, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_counitIso, CategoryTheory.Discrete.productEquiv_counitIso_hom_app, CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.ULift.equivalence_counitIso_hom_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, FinPartOrd.dualEquiv_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_counitIso, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Functor.flipping_counitIso_hom_app_app_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, changeFunctor_counitIso_hom_app, refl_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, MulEquiv.toSingleObjEquiv_counitIso_hom, CategoryTheory.Under.postEquiv_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, unop_counitIso, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_counitIso, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.Adjunction.toEquivalence_counitIso_inv_app, CategoryTheory.Limits.Cones.postcomposeEquivalence_counitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_hom_app_fst_app, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_hom_app, changeInverse_counitIso_inv_app, HomologicalComplex.opEquivalence_counitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_counitIso_inv_app_hom, TwoP.swapEquiv_counitIso_inv_app_hom_toFun, CategoryTheory.prod.rightUnitorEquivalence_counitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CategoryTheory.Comma.equivProd_counitIso_inv_app, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_left, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Discrete.sumEquiv_counitIso_hom_app, CategoryTheory.ShortComplex.opEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_counitIso, CategoryTheory.equivToOverUnit_counitIso, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_counitIso, CategoryTheory.ObjectProperty.fullSubcategoryCongr_counitIso, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, MulEquiv.toSingleObjEquiv_counitIso_inv, CategoryTheory.skeletonEquivalence_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_eq, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, OrderIso.equivalence_counitIso, sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, commAlgCatEquivUnder_counitIso, sheafCongrPrecoherent_counitIso_inv_app_val_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, HomologicalComplex₂.flipEquivalence_counitIso, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, ext_iff, symmEquivInverse_obj_counitIso_inv, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Over.opEquivOpUnder_counitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.forgetEnrichmentOppositeEquivalence_counitIso, changeInverse_counitIso_hom_app, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_counitIso, CategoryTheory.coalgebraEquivOver_counitIso, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.widePushoutShapeOpEquiv_counitIso, Bipointed.swapEquiv_counitIso_inv_app_toFun, CategoryTheory.Monad.algebraEquivOfIsoMonads_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, mapCommMon_counitIso, sheafCongr_counitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, symmEquiv_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_right, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, mapMon_counitIso, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.prod.leftUnitorEquivalence_counitIso, core_counitIso_hom_app_iso_hom, trans_counitIso, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.RelCat.opEquivalence_counitIso, CategoryTheory.ShrinkHoms.equivalence_counitIso, CategoryTheory.Functor.leftOpRightOpEquiv_counitIso_hom_app_app, CategoryTheory.Discrete.equivalence_counitIso, ModuleCat.matrixEquivalence_counitIso, CategoryTheory.orderDualEquivalence_counitIso, CategoryTheory.Discrete.productEquiv_counitIso_inv_app, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Idempotents.karoubiUniversal₁_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, Action.functorCategoryEquivalence_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_inv_app_hom_hom_hom, OrderHom.equivalenceFunctor_counitIso_hom_app_app, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_counitIso, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.functorProdFunctorEquiv_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_left, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_left, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_right, CategoryTheory.Pi.optionEquivalence_counitIso, CategoryTheory.opOpEquivalence_counitIso, functor_unitIso_comp, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, groupAddGroupEquivalence_counitIso, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, core_counitIso_hom_app_iso_inv, CategoryTheory.Over.iteratedSliceEquiv_counitIso, CategoryTheory.Groupoid.invEquivalence_counitIso, symm_counitIso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_counitIso, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.ULift.equivalence_counitIso_inv_app, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_counitIso_hom_app_hom_hom_hom, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, CategoryTheory.Functor.Final.coconesEquiv_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Monad.monadMonEquiv_counitIso_inv_app_hom, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.ForgetEnrichment.equiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_counitIso_hom_app_hom, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Iso.inverseCompIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, CategoryTheory.prodOpEquiv_counitIso_hom_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_counitIso, AddCommMonCat.equivalence_counitIso, leftOp_counitIso_hom_app, CategoryTheory.shiftEquiv'_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, mapCommGrp_counitIso, core_counitIso_inv_app_iso_hom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, partialFunEquivPointed_counitIso_hom_app_toFun, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_counitIso, TwoP.swapEquiv_counitIso_hom_app_hom_toFun, CategoryTheory.Prod.braiding_counitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_eq, CategoryTheory.StructuredArrow.preEquivalence_counitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, symmEquivInverse_obj_unitIso_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, alexDiscEquivPreord_counitIso, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, TopologicalSpace.Opens.mapMapIso_counitIso, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Square.arrowArrowEquivalence'_counitIso, SimplexCategory.revEquivalence_counitIso, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_counitIso, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.StructuredArrow.prodEquivalence_counitIso, CategoryTheory.sheafBotEquivalence_counitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, CategoryTheory.Limits.walkingSpanOpEquiv_counitIso_inv_app, CategoryTheory.equivEssImageOfReflective_counitIso, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, SSet.opEquivalence_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, Types.monoOverEquivalenceSet_counitIso, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, op_counitIso, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.prodOpEquiv_counitIso_inv_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_counitIso, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, HomologicalComplex.unopEquivalence_counitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_hom_app_snd_app, CategoryTheory.piEquivalenceFunctorDiscrete_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_counitIso, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Limits.widePullbackShapeOpEquiv_counitIso, core_counitIso_inv_app_iso_inv, CategoryTheory.Functor.equiv_counitIso, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, congrRight_counitIso_inv_app, CategoryTheory.Limits.Cocones.precomposeEquivalence_counitIso, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, congrRight_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.Square.arrowArrowEquivalence_counitIso, CategoryTheory.Sum.functorEquiv_counitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, changeFunctor_counitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, CategoryTheory.MonoidalOpposite.mopEquiv_counitIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_counitIso_inv_app_fst_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, induced_counitIso, CategoryTheory.comonEquiv_counitIso, CategoryTheory.Square.flipEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift
|
fullyFaithfulFunctor 📖 | CompOp | 5 mathmath: CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Limits.CategoricalPullback.mkNatIso_eq, additive_inverse_of_FullyFaithful
|
fullyFaithfulInverse 📖 | CompOp | — |
funInvIdAssoc 📖 | CompOp | 6 mathmath: funInvIdAssoc_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, congrLeft_unitIso_inv_app, congrLeft_unitIso_hom_app, funInvIdAssoc_inv_app
|
functor 📖 | CompOp | 978 mathmath: CategoryTheory.MorphismProperty.LeftFraction.map_compatibility, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CochainComplex.acyclic_op, CategoryTheory.MorphismProperty.inverseImage_equivalence_inverse_eq_map_functor, CategoryTheory.sheafBotEquivalence_functor, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, leftOp_unitIso_hom_app, sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.Pi.eqToEquivalenceFunctorIso_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.WithInitial.equivComma_functor_obj_right_obj, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_map, mapGrp_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, Bipointed.swapEquiv_functor_obj_toProd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, comp_asNatTrans, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, sheafCongrPreregular_counitIso_inv_app_val_app, MoritaEquivalence.linear, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_map_val, CategoryTheory.WithTerminal.equivComma_functor_obj_left_obj, CategoryTheory.StructuredArrow.mapIso_functor_obj_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, sheafCongr_functor, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_functor, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, commGroupAddCommGroupEquivalence_functor, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Sum.functorEquivFunctorCompFstIso_inv_app_app, CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_functor, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, CategoryTheory.MonoOver.mapIso_functor, CategoryTheory.Limits.widePushoutShapeOpEquiv_functor, CategoryTheory.Comma.toPUnitIdEquiv_functor_map, CategoryTheory.MonoidalOpposite.mopMopEquivalence_functor_obj, CategoryTheory.Square.arrowArrowEquivalence_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, counitIso_inv_app_comp_functor_map_η_inverse, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_functor, CategoryTheory.Limits.parallelPairOpIso_inv_app_zero, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_functor, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_functor, AddMonCat.equivalence_functor_obj_coe, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.Join.mapPairEquiv_counitIso, rightOp_counitIso_inv_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.typeEquiv_functor_obj_val_obj, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.Sum.functorEquiv_functor_map, CategoryTheory.CatCommSq.hInv_iso_inv_app, CategoryTheory.Discrete.opposite_functor_obj_as, leftOp_unitIso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, leftOp_functor_obj, prod_functor, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff', CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_map_hom, CochainComplex.exactAt_op, CategoryTheory.Over.forgetMapTerminal_hom_app, rightOp_functor_map, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_inv_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, CategoryTheory.Limits.PushoutCocone.unop_π_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, IsTriangulated.instIsTriangulatedFunctor, isRightAdjoint_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Under.mapIso_functor, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Iso.isoInverseComp_inv_app, CompleteLat.dualEquiv_functor, CategoryTheory.Comma.mapLeftIso_functor_map_left, prod_counitIso, Action.leftUnitor_inv_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, MonObj.mopEquivCompForgetIso_hom_app_unmop, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AlgebraicTopology.DoldKan.Compatibility.equivalence_functor, leftOp_counitIso_inv_app, CategoryTheory.shiftEquiv'_functor, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_fst_map, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, OrderIso.equivalence_functor, cancel_unit_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.Cocones.precomposeEquivalence_functor, CategoryTheory.Limits.Cones.functorialityEquivalence_functor, CategoryTheory.comonEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, cancel_counit_right, CategoryTheory.forgetEnrichmentOppositeEquivalence_functor, map_injective_iff, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.Functor.flipping_functor_map_app_app, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Monoidal.transportStruct_tensorHom, BoolAlg.dualEquiv_functor, CategoryTheory.Preadditive.DoldKan.equivalence_functor, FinPartOrd.dualEquiv_functor, CategoryTheory.Idempotents.karoubiUniversal_functor_eq, unitInv_naturality, functor_unit_comp, Action.whiskerRight_hom, CategoryTheory.Comma.mapRightIso_functor_map_left, inv_fun_map, full_functor, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, CategoryTheory.coalgebraEquivOver_functor, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_functor, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Under.equivalenceOfIsInitial_functor, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, HomologicalComplex.unopEquivalence_functor, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_functor, core_unitIso_hom_app_iso_inv, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Monoidal.transportStruct_tensorObj, CategoryTheory.WithTerminal.equivComma_functor_obj_left_map, toOrderIso_apply, CategoryTheory.Functor.curry₃_obj_obj_map_app, CategoryTheory.Limits.hasColimit_equivalence_comp, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, CochainComplex.homotopyUnop_hom_eq, FinBddDistLat.dualEquiv_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.WithTerminal.equivComma_functor_obj_right, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CategoryTheory.Join.opEquiv_functor_obj_op_right, BddOrd.dualEquiv_functor, CategoryTheory.Limits.parallelPairOpIso_inv_app_one, changeInverse_functor, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_incl, CategoryTheory.Idempotents.karoubiUniversal₁_functor, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, sheafCongrPreregular_inverse_obj_val_map, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, congrLeft_counitIso_inv_app, CategoryTheory.Comma.mapRightIso_functor_obj_right, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.TwoSquare.GuitartExact.vComp_iff_of_equivalences, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, TwoP.swapEquiv_functor_map_hom_toFun, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, symm_unitIso, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, CategoryTheory.WithInitial.equivComma_functor_obj_right_map, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₂, mapHomologicalComplex_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, boolRingCatEquivBoolAlg_functor, CategoryTheory.Functor.asEquivalence_functor, CategoryTheory.ShrinkHoms.equivalence_functor, funInvIdAssoc_hom_app, CategoryTheory.Functor.Final.coconesEquiv_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, pi_functor, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CategoryTheory.Idempotents.toKaroubiEquivalence_functor_additive, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Comon.Comon_EquivMon_OpOp_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₁, sheafCongrPrecoherent_functor_obj_val_obj, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_iso_inv_app, CategoryTheory.Localization.equivalence_counitIso_app, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.ShortComplex.functorEquivalence_functor, CategoryTheory.eq_functor_obj, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_fst_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Monoidal.transportStruct_tensorUnit, CategoryTheory.piEquivalenceFunctorDiscrete_functor_obj, CategoryTheory.Limits.Cocones.equivalenceOfReindexing_functor_obj, ModuleCat.matrixEquivalence_functor, PartOrd.dualEquiv_functor, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.StructuredArrow.prodEquivalence_functor, cancel_counitInv_right, AddCommMonCat.equivalence_functor_map, SemilatSupCatEquivSemilatInfCat_functor, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, faithful_functor, changeFunctor_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, map_η_comp_η, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, counit_naturality_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, mapCommGrp_functor, Lat.dualEquiv_functor, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Limits.parallelPairOpIso_hom_app_one, commAlgCatEquivUnder_functor_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, inverseFunctor_map, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_functor, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, CategoryTheory.CostructuredArrow.mapIso_functor_obj_left, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_map_hom, sheafCongrPreregular_functor_obj_val_obj, CategoryTheory.MonoidalCategory.DayFunctor.equiv_functor_map, changeFunctor_trans, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, sheafCongrPreregular_functor_map_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.functorProdFunctorEquiv_functor, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, CategoryTheory.Functor.curry₃_obj_map_app_app, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.IsSeparating.of_equivalence, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, HomologicalComplex.dgoEquivHomologicalComplex_functor, CategoryTheory.WithTerminal.equivComma_functor_map_right, CategoryTheory.Comon.monoidal_whiskerLeft_hom, mapMon_unitIso, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_functor, CategoryTheory.Comma.toPUnitIdEquiv_functor_obj, CategoryTheory.StructuredArrow.preEquivalence_functor, mapAction_functor, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_obj, pi_unitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_functor, counitInv_functor_comp, sheafCongrPreregular_inverse_map_val_app, sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.IsSeparator.of_equivalence, CategoryTheory.decomposedEquiv_functor, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_fst_app, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_fst, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₃, symmEquivFunctor_map, sheafCongrPreregular_functor_obj_val_map, CategoryTheory.Comma.mapLeftIso_functor_obj_left, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_hom, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₃, AlgebraicTopology.DoldKan.Compatibility.equivalence₁_functor, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, refl_functor, CategoryTheory.Over.forgetMapTerminal_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_map, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, partialFunEquivPointed_functor_map_toFun, CategoryTheory.TwoSquare.GuitartExact.vComp'_iff_of_equivalences, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, FinBoolAlg.dualEquiv_functor, CategoryTheory.Over.equivalenceOfIsTerminal_functor, sheafCongrPrecoherent_inverse_map_val_app, isDenseSubsite_functor_of_isCocontinuous, Action.functorCategoryEquivalence_functor, rightOp_unitIso_hom_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_μ, CategoryTheory.prod.rightUnitorEquivalence_functor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Join.opEquiv_functor_map_op_edge, CategoryTheory.Limits.walkingParallelPairOpEquiv_functor, TopologicalSpace.Opens.mapMapIso_functor, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_X, CommShift.instCommShiftHomFunctorCounitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_ε, congrLeft_functor, CategoryTheory.Join.opEquiv_functor_map_op_inclRight, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Limits.opSpan_hom_app, CategoryTheory.Iso.compInverseIso_inv_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_obj, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, unitInv_naturality_assoc, CategoryTheory.ShortComplex.opEquiv_functor, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, CategoryTheory.CatCommSq.vInv_iso_hom_app, DistLat.dualEquiv_functor, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_pt, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_map, CategoryTheory.Comma.mapRightIso_functor_obj_hom, essSurj_functor, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_snd_app, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Functor.leftOpRightOpEquiv_functor_obj_obj, map_projective_iff, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, congrRight_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, changeFunctor_counitIso_hom_app, Preord.dualEquiv_functor, CategoryTheory.equivEssImageOfReflective_functor, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, MulEquiv.toSingleObjEquiv_functor_obj, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, CategoryTheory.Discrete.equivalence_functor, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.Groupoid.invEquivalence_functor_map, counitInv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, sheafCongrPrecoherent_inverse_obj_val_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Functor.curry₃_obj_obj_obj_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, unop_counitIso, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₁, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_hom, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, mapCommGrp_unitIso, cancel_unitInv_right, invFunIdAssoc_hom_app, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.Functor.opUnopEquiv_functor, CategoryTheory.sum.associativity_functor, CategoryTheory.Iso.compInverseIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, CategoryTheory.WithInitial.equivComma_functor_map_left, changeFunctor_refl, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.WithTerminal.opEquiv_functor_obj, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app, CategoryTheory.Sieve.functorPushforward_inverse, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, changeInverse_counitIso_inv_app, CategoryTheory.Limits.opCospan_hom_app, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_map_term, CategoryTheory.IsCoseparating.of_equivalence, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.RelCat.opEquivalence_functor, CategoryTheory.Functor.equiv_functor_obj, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, CategoryTheory.IsUniversalColimit.whiskerEquivalence, CategoryTheory.Monad.algebraEquivOfIsoMonads_functor, sheafCongr.inverse_obj_val_obj, mapCommMon_unitIso, instIsDenseSubsiteInducedTopologyInverseFunctor, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, mkIso_hom, changeInverse_unitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.Pretriangulated.op_distinguished, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_map_hom_hom, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_functor, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, CoalgCat.comonEquivalence_functor, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.ObjectProperty.isClosedUnderLimitsOfShape_inverseImage_iff, CategoryTheory.Prod.braiding_functor, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.Subfunctor.equivalenceMonoOver_functor_obj, CategoryTheory.Limits.Cones.postcomposeEquivalence_functor, CategoryTheory.AsSmall.equiv_functor, symmEquiv_functor, CategoryTheory.Under.forgetMapInitial_hom_app, symmEquivInverse_obj_functor, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_obj_some, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_functor, CategoryTheory.Comma.mapRightIso_functor_map_right, cancel_counitInv_right_assoc, TwoP.swapEquiv_functor_obj_X, CategoryTheory.WithInitial.equivComma_functor_map_right_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Comma.toIdPUnitEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, CategoryTheory.Functor.mapCoconePrecomposeEquivalenceFunctor_hom_hom, TwoP.swapEquiv_functor_obj_toTwoPointing_toProd, sheafCongr.unitIso_hom_app_val_app, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.MonoidalCategory.DayFunctor.equiv_functor_obj, Bipointed.swapEquiv_functor_map_toFun, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_inv_app_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.typeEquiv_functor_obj_val_map, CategoryTheory.Over.iteratedSliceEquiv_functor, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_iso_hom_app, invFunIdAssoc_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.Monoidal.transportStruct_whiskerRight, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_pt, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_pt, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_functor, CategoryTheory.Comma.toIdPUnitEquiv_functor_obj, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, BddDistLat.dualEquiv_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, congrLeft_unitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, CategoryTheory.Cat.opEquivalence_functor, CategoryTheory.Adjunction.rightOp_eq, cancel_unit_right_assoc, mapGrp_unitIso, functorFunctor_obj, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_hom_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, counitInv_app_comp_functor_map_η_inverse, sheafCongrPreregular_counitIso_hom_app_val_app, CochainComplex.homotopyOp_hom_eq, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, CategoryTheory.Limits.opCospan_inv_app, congrLeft_unitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, sheafCongrPrecoherent_counitIso_inv_app_val_app, mapHomologicalComplex_functor, unitInv_app_inverse, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_functor, ext_iff, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_functor, symmEquivInverse_obj_counitIso_inv, CategoryTheory.Limits.PullbackCone.unop_ι_app, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Pretriangulated.mem_distTriang_op_iff', CategoryTheory.Comma.mapRightIso_functor_obj_left, OrderHom.equivalenceFunctor_functor_obj_obj, CategoryTheory.ForgetEnrichment.equiv_functor, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Mat_.equivalenceSelfOfHasFiniteBiproducts_functor, changeFunctor_unitIso_inv_app, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.ULift.equivalence_functor, CategoryTheory.Limits.reflexiveCoforkEquivCofork_functor_obj_π, CategoryTheory.Sieve.mem_functorPushforward_inverse, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, ContAction.resEquiv_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Discrete.equivOfEquivalence_apply, CategoryTheory.Functor.flipping_functor_obj_map_app, CategoryTheory.Comma.toPUnitIdEquiv_functor_iso, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, IsTriangulated.instIsTriangulatedFunctorSymmOfInverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, changeInverse_counitIso_hom_app, CategoryTheory.Join.opEquiv_functor_obj_op_left, groupAddGroupEquivalence_functor, CategoryTheory.StructuredArrow.mapIso_functor_obj_right, toAdjunction_counit, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, fun_inv_map, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_functor_map, Bipointed.swapEquiv_functor_obj_X, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_functor, CategoryTheory.IsVanKampenColimit.whiskerEquivalence, CategoryTheory.prod.associativity_functor, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.StructuredArrow.mapIso_functor_map_left, congrLeftFunctor_map, core_functor_obj_of, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.MonoOver.congr_functor, isEquivalence_functor, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_isoBot, CategoryTheory.ComposableArrows.opEquivalence_functor_obj_obj, mapCommMon_counitIso, CategoryTheory.ObjectProperty.IsSeparating.of_equivalence, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, core_functor_map_iso_inv, CategoryTheory.Limits.walkingCospanOpEquiv_functor_map, CategoryTheory.eq_functor_map, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, partialFunEquivPointed_functor_obj_X, CategoryTheory.MonoOver.congr_inverse, cancel_unit_right_assoc', CategoryTheory.Functor.fun_inv_map, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, instIsCommMonObjOppositeCommAlgCatXUnopMonObjCommBialgCatFunctorCommBialgCatEquivComonCommAlgCatOfIsCocommCarrier, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, op_functor, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, HomologicalComplex₂.flipEquivalence_functor, mapMon_counitIso, CategoryTheory.Limits.Cone.equivCostructuredArrow_functor, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, core_counitIso_hom_app_iso_hom, inv_fun_map_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, inverse_counitInv_comp_assoc, sheafCongrPrecoherent_unitIso_inv_app_val_app, TopCat.Presheaf.presheafEquivOfIso_functor_obj_obj, symm_functor, trans_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, changeFunctor_functor, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, CategoryTheory.Limits.Fork.op_ι_app, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.IsVanKampenColimit.whiskerEquivalence_iff, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₂, CategoryTheory.WithInitial.equivComma_functor_obj_left, rightOp_functor_obj, map_η_comp_η_assoc, CategoryTheory.Functor.instIsWellOrderContinuousCompFunctorEquivalence, CategoryTheory.Limits.walkingCospanOpEquiv_functor_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CategoryTheory.simplicialCosimplicialEquiv_functor_map_app, MonObj.mopEquiv_functor_obj_X_unmop, CategoryTheory.Limits.walkingSpanOpEquiv_functor_map, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.Discrete.sumEquiv_functor_obj, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, isLeftAdjoint_functor, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.orderDualEquivalence_functor_obj, CategoryTheory.Comma.opEquiv_functor, counitInv_app_functor, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Sum.functorEquivFunctorCompSndIso_inv_app_app, CategoryTheory.Functor.flipping_functor_obj_obj_obj, CategoryTheory.Under.postEquiv_inverse, CategoryTheory.equivOfTensorIsoUnit_functor, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, counitInv_functor_comp_assoc, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, functor_map_ε_inverse_comp_counit_app, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, fun_inv_map_assoc, CategoryTheory.Functor.closedIhom_map_app, ε_comp_map_ε, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, comp_asNatTrans_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, SimplexCategory.revEquivalence_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_functor, CategoryTheory.Functor.currying_functor_obj_obj, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.Pi.optionEquivalence_functor, CategoryTheory.Functor.isLeftKanExtensionAlongEquivalence, unit_naturality_assoc, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_snd_obj, unit_app_tensor_comp_inverse_map_δ_functor_assoc, Action.tensorHom_hom, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, Action.associator_hom_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.Subobject.lowerEquivalence_unitIso, unit_naturality, CategoryTheory.Sieve.mem_functorPushforward_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, ModuleCat.restrictScalarsEquivalenceOfRingEquiv_additive, CategoryTheory.Presheaf.coherentExtensiveEquivalence_functor_obj_val, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_inv, CategoryTheory.orderDualEquivalence_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.Limits.widePullbackShapeOpEquiv_functor, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Groupoid.invEquivalence_functor_obj, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_mul, CategoryTheory.Pi.eqToEquivalenceFunctorIso_inv, sheafCongrPrecoherent_inverse_obj_val_map, core_counitIso_hom_app_iso_inv, sheafCongrPrecoherent_unitIso_hom_app_val_app, cancel_counitInv_right_assoc', CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_δ, symm_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_functor, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_F, mapMon_functor, AlgebraicTopology.DoldKan.Compatibility.τ₁_hom_app, CategoryTheory.Comma.mapLeftIso_functor_obj_hom, unit_app_comp_inverse_map_η_functor, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_functor, functor_map_μ_inverse_comp_counit_app_tensor_assoc, Action.whiskerLeft_hom, core_unitIso_hom_app_iso_hom, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.ObjectProperty.IsCoseparating.of_equivalence, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, sheafCongrPreregular_inverse_obj_val_obj, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, rightOp_unitIso_inv_app, id_asNatTrans, CategoryTheory.Join.InclLeftCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Over.postEquiv_unitIso, unit_app_inverse, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.MonoidalOpposite.mopMopEquivalenceFunctorMonoidal_η, CategoryTheory.typeEquiv_functor_map_val_app, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Idempotents.karoubiUniversal₂_functor_eq, CategoryTheory.Functor.equiv_functor_map, HomologicalComplex.opEquivalence_functor, CategoryTheory.Functor.inv_fun_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_inv, sheafCongr.inverse_obj_val_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.ObjectProperty.fullSubcategoryCongr_functor, CategoryTheory.Idempotents.DoldKan.equivalence_functor, NonemptyFinLinOrd.dualEquiv_functor, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.CostructuredArrow.prodEquivalence_functor, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_functor, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_inv_app, CategoryTheory.Square.arrowArrowEquivalence'_functor, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₂, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.WithTerminal.equivComma_functor_map_left_app, CategoryTheory.Functor.flipping_functor_obj_obj_map, CategoryTheory.Abelian.DoldKan.equivalence_functor, mkHom_id_functor, counitInv_naturality, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, unit_inverse_comp, CategoryTheory.prodOpEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, AddCommMonCat.equivalence_functor_obj_coe, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, PartOrdEmb.dualEquiv_functor, CategoryTheory.Iso.inverseCompIso_inv_app, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_obj, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, LinOrd.dualEquiv_functor, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, commAlgCatEquivUnder_functor_map, CategoryTheory.WithInitial.opEquiv_functor_obj, CategoryTheory.ShiftedHom.opEquiv_symm_apply, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_functor, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, CategoryTheory.prodOpEquiv_functor_obj, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_left, leftOp_counitIso_hom_app, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, CategoryTheory.Limits.walkingSpanOpEquiv_functor_obj, functor_map_μ_inverse_comp_counit_app_tensor, mapCommGrp_counitIso, CategoryTheory.MorphismProperty.inverseImage_equivalence_functor_eq_map_inverse, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, Action.rightUnitor_hom_hom, core_counitIso_inv_app_iso_hom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, CategoryTheory.simplicialCosimplicialAugmentedEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.Monad.monadMonEquiv_functor, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.CostructuredArrow.mapIso_functor_obj_right, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, sheafCongr.inverse_map_val_app, CategoryTheory.Discrete.sumEquiv_functor_map, CategoryTheory.MonoidalOpposite.unmopEquiv_functor_map, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.TwoSquare.equivalenceJ_functor, SSet.Truncated.HomotopyCategory.BinaryProduct.associativityIso_hom_app, CategoryTheory.equivToOverUnit_functor, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, Action.associator_inv_hom, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, core_functor_map_iso_hom, AddMonCat.equivalence_functor_map, Action.resEquiv_functor, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, trans_functor, CategoryTheory.ObjectProperty.isClosedUnderColimitsOfShape_inverseImage_iff, CategoryTheory.isCardinalPresentable_of_equivalence, congrLeft_inverse, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, symmEquivInverse_obj_unitIso_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_functor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_functor, CategoryTheory.Comma.equivProd_functor_map, Action.functorCategoryEquivalence_linear, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.piEquivalenceFunctorDiscrete_functor_map, unop_functor, CategoryTheory.MonoOver.congr_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_functor, op_unitIso, mkHom_comp, CategoryTheory.Over.opEquivOpUnder_functor_map, induced_functor, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_obj, CategoryTheory.IsCoseparator.of_equivalence, mkIso_inv, Action.functorCategoryEquivalence_preservesZeroMorphisms, CategoryTheory.Under.postEquiv_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.Subobject.lowerEquivalence_functor, CategoryTheory.Limits.WidePullbackShape.equivalenceOfEquiv_functor_obj_none, CategoryTheory.Over.mapIso_functor, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, changeInverse_unitIso_hom_app, CategoryTheory.Comma.mapLeftIso_functor_obj_right, Action.rightUnitor_inv_hom, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, congrRight_unitIso_hom_app, CategoryTheory.IsUniversalColimit.whiskerEquivalence_iff, partialFunEquivPointed_functor_obj_point, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.Functor.currying_functor_obj_map, CategoryTheory.Functor.leftOpRightOpEquiv_functor_map_app, CategoryTheory.skeletonEquivalence_functor, CategoryTheory.Monoidal.transportStruct_whiskerLeft, CategoryTheory.Discrete.productEquiv_functor_obj, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, ε_comp_map_ε_assoc, SimplicialObject.opEquivalence_functor, core_unitIso_inv_app_iso_hom, CategoryTheory.Join.opEquiv_functor_map_op_inclLeft, MulEquiv.toSingleObjEquiv_functor_map, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Under.opEquivOpOver_functor_map, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Limits.coconeEquivalenceOpConeOp_functor_map, trans_unitIso, CategoryTheory.Under.postEquiv_unitIso, CategoryTheory.Pretriangulated.triangleRotation_functor, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.Sum.functorEquivFunctorCompSndIso_hom_app_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, CategoryTheory.Sum.functorEquivFunctorCompFstIso_hom_app_app, CategoryTheory.ObjectProperty.topEquivalence_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, leftOp_functor_map, CategoryTheory.Limits.HasLimit.isoOfEquivalence_inv_π, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_functor, funInvIdAssoc_inv_app, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_functor, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_functor_obj_ι, mkHom_comp_assoc, CategoryTheory.prod.functorProdToProdFunctorAssociator_inv_app, symmEquivInverse_obj_inverse, Action.functorCategoryEquivalence_additive, CategoryTheory.Limits.hasLimit_equivalence_comp, CategoryTheory.Comma.toIdPUnitEquiv_functor_iso, mapGrp_functor, CategoryTheory.Limits.opSpan_inv_app, CategoryTheory.subterminalsEquivMonoOverTerminal_functor_obj_obj, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_inverse, op_counitIso, CategoryTheory.Functor.Initial.conesEquiv_functor, CategoryTheory.Comon.monoidal_tensorHom_hom, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_functor, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Limits.Cocone.equivStructuredArrow_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, toAdjunction_unit, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_snd, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, core_unitIso_inv_app_iso_inv, CategoryTheory.Discrete.productEquiv_functor_map, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, ModuleCat.Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, mapCommMon_functor, CategoryTheory.algebraEquivUnder_functor, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_map, CategoryTheory.prod.prodFunctorToFunctorProdAssociator_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_map_hom_hom_hom, counitInv_naturality_assoc, instIsDenseSubsiteFunctor, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, CategoryTheory.Join.mapPairEquiv_functor, counit_app_functor, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_functor, CategoryTheory.MonoidalOpposite.mopEquiv_functor, alexDiscEquivPreord_functor, CategoryTheory.Pi.equivalenceOfEquiv_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, TopCat.Presheaf.presheafEquivOfIso_functor_obj_map, CategoryTheory.Limits.CategoricalPullback.mkNatIso_eq, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.GradedObject.comapEquiv_functor, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Sum.Swap.equivalence_functor, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, inverse_counitInv_comp, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_functor, CategoryTheory.Adjunction.toEquivalence_functor, CategoryTheory.Over.postEquiv_functor, core_counitIso_inv_app_iso_inv, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, CategoryTheory.WithTerminal.opEquiv_functor_map, CategoryTheory.Join.InclRightCompRightOpOpEquivFunctor_hom_app, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_functor, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₂, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, BddLat.dualEquiv_functor, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, congrRightFunctor_map, unit_inverse_comp_assoc, symm_inverse, congrRight_counitIso_inv_app, counit_naturality, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_obj_obj_mon_one, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.functor_map_app_hom_hom, CategoryTheory.Comma.mapLeftIso_functor_map_right, CategoryTheory.Functor.currying_functor_map_app, CategoryTheory.Square.flipEquivalence_functor, Action.leftUnitor_hom_hom, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.opOpEquivalence_functor, CategoryTheory.WithTerminal.widePullbackShapeEquiv_functor_obj, CategoryTheory.prod.functorProdToProdFunctorAssociator_hom_app, CategoryTheory.Comma.equivProd_functor_obj, congrRight_counitIso_hom_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_map, trans_toAdjunction, changeFunctor_counitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_functor_obj, CategoryTheory.Sum.functorEquiv_functor_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, SSet.opEquivalence_functor, congrRight_unitIso_inv_app, functor_unit_comp_assoc, additive_inverse_of_FullyFaithful, symmEquivInverse_map_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_obj_snd_map, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.prod.leftUnitorEquivalence_functor, CategoryTheory.Functor.isRightKanExtensionAlongEquivalence, CategoryTheory.Limits.parallelPairOpIso_hom_app_zero, FundamentalGroupoid.punitEquivDiscretePUnit_functor
|
functorFunctor 📖 | CompOp | 3 mathmath: functorFunctor_obj, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, functorFunctor_map
|
instCategory 📖 | CompOp | 35 mathmath: symmEquivFunctor_obj, comp_asNatTrans, mkHom_id_inverse, inverseFunctor_obj, symmEquivInverse_obj_counitIso_hom, inverseFunctor_map, symmEquivFunctor_map, inverseFunctorObjIso_inv, mkIso_hom, congrLeftFunctor_obj, symmEquiv_functor, symmEquivInverse_obj_functor, functorFunctor_obj, symmEquivInverse_obj_counitIso_inv, inverseFunctorObj'_hom_app, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, congrLeftFunctor_map, symmEquiv_counitIso, symmEquiv_unitIso, comp_asNatTrans_assoc, symmEquiv_inverse, id_asNatTrans, congrRightFunctor_obj, mkHom_id_functor, functorFunctor_map, inverseFunctorObjIso_hom, inverseFunctorObj'_inv_app, symmEquivInverse_obj_unitIso_inv, mkHom_comp, mkIso_inv, mkHom_comp_assoc, symmEquivInverse_obj_inverse, symmEquivInverse_obj_unitIso_hom, congrRightFunctor_map, symmEquivInverse_map_app
|
instInhabited 📖 | CompOp | — |
instPowInt 📖 | CompOp | 3 mathmath: pow_one, pow_zero, pow_neg_one
|
invFunIdAssoc 📖 | CompOp | 12 mathmath: CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, congrLeft_counitIso_inv_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, invFunIdAssoc_hom_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, invFunIdAssoc_inv_app, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, congrLeft_counitIso_hom_app
|
inverse 📖 | CompOp | 869 mathmath: CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, CategoryTheory.MorphismProperty.inverseImage_equivalence_inverse_eq_map_functor, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, leftOp_unitIso_hom_app, sheafCongrPrecoherent_counitIso_hom_app_val_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, preregular_isSheaf_iff, CategoryTheory.Adjunction.toEquivalence_inverse, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app, sheafCongr.counitIso_hom_app_val_app, isLeftAdjoint_inverse, congrFullSubcategory_inverse, CategoryTheory.Comma.mapLeftIso_inverse_map_right, CategoryTheory.sum.associativity_inverse, mapGrp_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, sheafCongrPreregular_counitIso_inv_app_val_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CategoryTheory.Pretriangulated.Opposite.mem_distinguishedTriangles_iff, isEquivalence_inverse, CategoryTheory.Join.mapPairEquiv_inverse, CategoryTheory.Groupoid.invEquivalence_inverse_map, mapMon_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_map, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.Cones.equivalenceOfReindexing_inverse, isDenseSubsite_inverse_of_isCocontinuous, counitIso_inv_app_comp_functor_map_η_inverse, BddDistLat.dualEquiv_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse, CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.Over.mapIso_inverse, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_inverse, CategoryTheory.Join.mapPairEquiv_counitIso, mapCommMon_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_inverse, rightOp_counitIso_inv_app, Bipointed.swapEquiv_inverse_obj_toProd, CategoryTheory.Limits.widePushoutShapeOpEquiv_inverse, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.CatCommSq.hInv_iso_inv_app, leftOp_unitIso_inv_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, alexDiscEquivPreord_inverse_obj_carrier, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_iso_inv, faithful_inverse, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Join.inclRightCompOpEquivInverse_inv_app_op, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.WithTerminal.opEquiv_inverse_obj, core_inverse_map_iso_hom, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_map_snd, ModuleCat.matrixEquivalence_inverse, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_one, CondensedMod.isDiscrete_tfae, CategoryTheory.piEquivalenceFunctorDiscrete_inverse_obj, CategoryTheory.prodOpEquiv_inverse_map, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, Action.functorCategoryEquivalence_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, precoherent_isSheaf_iff_of_essentiallySmall, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Iso.isoInverseComp_inv_app, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, prod_counitIso, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_inverse, Action.leftUnitor_inv_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence_functor, leftOp_counitIso_inv_app, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_zero, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, FinBoolAlg.dualEquiv_inverse, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, cancel_unit_right, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, CategoryTheory.Functor.currying_inverse_obj_obj_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_hom_app, pi_inverse, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, CategoryTheory.Monad.algebraEquivOfIsoMonads_inverse, congrFullSubcategory_counitIso, cancel_counit_right, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, MulEquiv.toSingleObjEquiv_inverse_map, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Monoidal.transportStruct_tensorHom, CategoryTheory.Idempotents.functorExtension_map_app, unitInv_naturality, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, functor_unit_comp, Action.whiskerRight_hom, inv_fun_map, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.functorProdFunctorEquiv_inverse, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Iso.isoInverseComp_hom_app, CategoryTheory.Sum.Swap.equivalence_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Discrete.sumEquiv_inverse_map, CategoryTheory.Comma.mapRightIso_inverse_map_right, core_unitIso_hom_app_iso_inv, CategoryTheory.prod.associativity_inverse, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Monoidal.transportStruct_tensorObj, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CoalgCat.comonEquivalence_inverse, CategoryTheory.Functor.flipping_inverse_obj_obj_map, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_hom_app, mkHom_id_inverse, Rep.homEquiv_apply_hom, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_map_unmop, Types.monoOverEquivalenceSet_inverse_map, CategoryTheory.MonoidalCategory.DayFunctor.equiv_inverse_obj_functor, sheafCongrPreregular_inverse_obj_val_map, SSet.opEquivalence_inverse, congrLeft_counitIso_inv_app, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, inverseFunctor_obj, alexDiscEquivPreord_inverse_obj_str, CategoryTheory.Monoidal.instIsMonoidalTransportedCounitEquivalenceTransported, symm_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality_assoc, mapHomologicalComplex_unitIso, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_mul_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero, funInvIdAssoc_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, AlgebraicTopology.DoldKan.Compatibility.equivalence₁CounitIso_inv_app, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Comma.mapLeftIso_inverse_obj_left, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_naturality, AddMonCat.equivalence_inverse_map, CategoryTheory.ObjectProperty.fullSubcategoryCongr_inverse, CategoryTheory.shiftEquiv'_inverse, refl_inverse, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.MonoidalCategory.DayFunctor.equiv_inverse_map_natTrans, sheafCongrPrecoherent_functor_obj_val_obj, changeInverse_inverse, CategoryTheory.Limits.spanOp_hom_app, CategoryTheory.Localization.equivalence_counitIso_app, Preord.dualEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.Join.opEquiv_inverse_map_inclRight_op, CategoryTheory.Sum.functorEquiv_inverse_map, CategoryTheory.Over.opEquivOpUnder_inverse_obj, CategoryTheory.Limits.widePullbackShapeOpEquiv_inverse, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Functor.currying_inverse_obj_obj_map, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.Comma.mapLeftIso_inverse_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_obj_unmop, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, cancel_counitInv_right, ContAction.resEquiv_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, changeFunctor_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, map_η_comp_η, counit_naturality_assoc, CategoryTheory.StructuredArrow.mapIso_inverse_obj_right, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_inverse, Bipointed.swapEquiv_inverse_map_toFun, Bipointed.swapEquiv_inverse_obj_X, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, CategoryTheory.Limits.PullbackCone.op_ι_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_inverse, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_map, CategoryTheory.typeEquiv_inverse_obj, symmEquivInverse_obj_counitIso_hom, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, inverseFunctor_map, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_inverse, functor_map_μ_inverse_comp_counitIso_hom_app_tensor_assoc, sheafCongrPreregular_functor_obj_val_obj, CategoryTheory.skeletonEquivalence_inverse, alexDiscEquivPreord_inverse_map, CategoryTheory.Limits.MulticospanIndex.multiforkOfParallelHomsEquivFork_inverse_obj_ι, CategoryTheory.Limits.Cone.equivCostructuredArrow_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_inverse, sheafCongrPreregular_functor_map_val_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_naturality_assoc, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_map_val, CategoryTheory.Adjunction.Equivalence.instIsMonoidalCounit, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, CategoryTheory.Limits.opParallelPairIso_hom_app_zero, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_obj, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_left, TwoP.swapEquiv_inverse_obj_X, CategoryTheory.Limits.walkingSpanOpEquiv_inverse_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, CategoryTheory.Comon.monoidal_whiskerLeft_hom, CategoryTheory.StructuredArrow.preEquivalence_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_map_unmop_unmop, mapMon_unitIso, pi_unitIso, counitInv_functor_comp, CategoryTheory.Mon.limit_mon_mul, sheafCongrPreregular_inverse_map_val_app, sheafCongrPrecoherent_functor_obj_val_map, CategoryTheory.WithInitial.opEquiv_inverse_obj, rightOp_inverse_map, CategoryTheory.Idempotents.functorExtension_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.Limits.opParallelPairIso_hom_app_one, symmEquivFunctor_map, sheafCongrPreregular_functor_obj_val_map, CategoryTheory.Over.equivalenceOfIsTerminal_inverse_map, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.Limits.instHasColimitDiscreteOppositeCompInverseOppositeOpFunctor, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_inverse, CategoryTheory.CostructuredArrow.prodEquivalence_inverse, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_map_app_snd, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_map_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.eq_inverse_obj, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_obj_mon_one_app, CategoryTheory.prod.rightUnitorEquivalence_inverse, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, CategoryTheory.Square.flipEquivalence_inverse, sheafCongrPrecoherent_inverse_map_val_app, CategoryTheory.Limits.spanOp_inv_app, rightOp_unitIso_hom_app, CategoryTheory.Groupoid.invEquivalence_inverse_obj, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_inv_app_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.cosimplicialSimplicialEquiv_inverse_obj, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.monoOver_terminal_to_subterminals_comp, CommShift.instCommShiftHomFunctorCounitIso, congrLeft_functor, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.opOpEquivalence_inverse, CategoryTheory.Iso.compInverseIso_inv_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, unitInv_naturality_assoc, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.sheafBotEquivalence_inverse_map_val, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.Join.opEquiv_inverse_obj_right_op, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, changeFunctor_counitIso_hom_app, AddMonCat.equivalence_inverse_obj_coe, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_obj, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_base, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, counitInv_app_comp_functor_map_η_inverse_assoc, sheafCongrPrecoherent_inverse_obj_val_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app, unop_counitIso, CategoryTheory.Idempotents.DoldKan.equivalence_inverse, CategoryTheory.AsSmall.equiv_inverse, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_hom_app_app, mapGrp_inverse, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, mapCommGrp_unitIso, cancel_unitInv_right, invFunIdAssoc_hom_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.algebraEquivUnder_inverse, CategoryTheory.Iso.compInverseIso_hom_app, CategoryTheory.sheafBotEquivalence_inverse_obj_val, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, MonObj.mopEquiv_inverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, functor_map_ε_inverse_comp_counit_app_assoc, CategoryTheory.Sieve.functorPushforward_inverse, congrFullSubcategory_unitIso, inverseFunctorObjIso_inv, changeInverse_counitIso_inv_app, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, mapCommMon_unitIso, instIsDenseSubsiteInducedTopologyInverseFunctor, CategoryTheory.Square.arrowArrowEquivalence_inverse, changeInverse_unitIso_inv_app, CategoryTheory.Over.equivalenceOfIsTerminal_inverse_obj, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, rightOp_inverse_obj, MulEquiv.toSingleObjEquiv_inverse_obj, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_inverse, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Cat.opEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, functor_map_ε_inverse_comp_counitIso_hom_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_map, CategoryTheory.TwoSquare.equivalenceJ_inverse, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, MonObj.mopEquiv_inverse_obj_X, CategoryTheory.Comma.mapRightIso_inverse_obj_right, CategoryTheory.Pretriangulated.mem_distTriang_op_iff, CategoryTheory.Functor.opUnopEquiv_inverse, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_inverse, PartOrdEmb.dualEquiv_inverse, symmEquivInverse_obj_functor, cancel_counitInv_right_assoc, CategoryTheory.Join.opEquiv_inverse_map_inclLeft_op, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_inverse, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_inverse_obj_left_as, sheafCongr.unitIso_hom_app_val_app, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, TopologicalSpace.Opens.mapMapIso_inverse, invFunIdAssoc_inv_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Monoidal.transportStruct_whiskerRight, induced_inverse_map, CategoryTheory.Functor.Initial.conesEquiv_inverse, groupAddGroupEquivalence_inverse, CategoryTheory.Limits.Cones.whiskeringEquivalence_counitIso, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Limits.PushoutCocone.op_π_app, congrLeft_unitIso_inv_app, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_hom_app, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Idempotents.DoldKan.N_obj, cancel_unit_right_assoc, mapGrp_unitIso, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_map, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, counitInv_app_comp_functor_map_η_inverse, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CategoryTheory.WithInitial.equivComma_inverse_obj_map, sheafCongrPreregular_counitIso_hom_app_val_app, CategoryTheory.prod.leftUnitorEquivalence_inverse, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_hom_app, congrLeft_unitIso_hom_app, sheafCongrPrecoherent_counitIso_inv_app_val_app, partialFunEquivPointed_inverse_obj, unitInv_app_inverse, sheafCongr.functor_map_val_app, CategoryTheory.ForgetEnrichment.equiv_inverse, ext_iff, CategoryTheory.Comma.toPUnitIdEquiv_inverse_map_left, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_inverse, symmEquivInverse_obj_counitIso_inv, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Join.inclRightCompOpEquivInverse_hom_app_op, CategoryTheory.Limits.cospanOp_hom_app, changeFunctor_unitIso_inv_app, AddCommMonCat.equivalence_inverse_obj_coe, CategoryTheory.Monoidal.transportStruct_leftUnitor, inverseFunctorObj'_hom_app, CategoryTheory.Sieve.mem_functorPushforward_inverse, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.typeEquiv_inverse_map, CategoryTheory.Comma.equivProd_inverse_map_right, Lat.dualEquiv_inverse, commAlgCatEquivUnder_inverse_obj_carrier, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, BoolAlg.dualEquiv_inverse, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, leftOp_inverse_map, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_inverse, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, boolRingCatEquivBoolAlg_inverse, CategoryTheory.Under.mapIso_inverse, changeInverse_counitIso_hom_app, toAdjunction_counit, CategoryTheory.Join.opEquiv_inverse_obj_left_op, fun_inv_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_pt, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Limits.instHasLimitDiscreteOppositeCompInverseOppositeOpFunctor, congrLeftFunctor_map, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, CategoryTheory.Join.inclLeftCompOpEquivInverse_inv_app_op, CategoryTheory.Monoidal.CommMonFunctorCategoryEquivalence.inverse_map_hom_hom_app, CategoryTheory.HasExactColimitsOfShape.of_codomain_equivalence, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_pt, CategoryTheory.Comma.mapLeftIso_inverse_obj_hom, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop, mapCommMon_counitIso, CategoryTheory.Square.arrowArrowEquivalence'_inverse, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, SemilatSupCatEquivSemilatInfCat_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop_assoc, CategoryTheory.MonoOver.congr_inverse, cancel_unit_right_assoc', CategoryTheory.Functor.fun_inv_map, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.WithTerminal.widePullbackShapeEquiv_inverse_obj, mapMon_counitIso, CategoryTheory.Comma.equivProd_inverse_obj_right, sheafCongr.functor_obj_val_map, CategoryTheory.forgetEnrichmentOppositeEquivalence_inverse, CompleteLat.dualEquiv_inverse, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.GradedObject.comapEquiv_inverse, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, core_counitIso_hom_app_iso_hom, inv_fun_map_assoc, inverse_counitInv_comp_assoc, sheafCongrPrecoherent_unitIso_inv_app_val_app, induced_inverse_obj, core_inverse_map_iso_inv, symm_functor, trans_counitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_map, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, functor_map_ε_inverse_comp_counitIso_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_inverse, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, map_η_comp_η_assoc, FinPartOrd.dualEquiv_inverse, CategoryTheory.simplicialCosimplicialEquiv_inverse_obj, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, CondensedSet.isDiscrete_tfae, precoherent_isSheaf_iff, HomologicalComplex₂.flipEquivalence_inverse, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_hom_app_app, CategoryTheory.ShortComplex.opEquiv_inverse, counitIso_inv_app_comp_functor_map_η_inverse_assoc, CategoryTheory.Subobject.lowerEquivalence_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_assoc, mapHomologicalComplex_counitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_map_fst, CategoryTheory.Monad.monadMonEquiv_inverse, CategoryTheory.Abelian.DoldKan.equivalence_inverse, counitInv_app_functor, CategoryTheory.Functor.flipping_inverse_obj_map_app, inverseLinear, rightOp_counitIso_hom_app, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Pretriangulated.unop_distinguished, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Under.postEquiv_inverse, SSet.Truncated.HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_pt, TwoP.swapEquiv_inverse_obj_toTwoPointing_toProd, counitInv_functor_comp_assoc, CategoryTheory.Join.inclLeftCompOpEquivInverse_hom_app_op, functor_map_ε_inverse_comp_counit_app, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, fun_inv_map_assoc, CategoryTheory.Comma.toPUnitIdEquiv_inverse_obj_right_as, ε_comp_map_ε, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, core_inverse_obj_of, instIsDenseSubsiteRegularTopologyInverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, CategoryTheory.Pi.optionEquivalence_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence_inverse, mapCommGrp_inverse, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.RelCat.opEquivalence_inverse, unit_naturality_assoc, unit_app_tensor_comp_inverse_map_δ_functor_assoc, Action.tensorHom_hom, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, Action.associator_hom_hom, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.equivOfTensorIsoUnit_inverse, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_inverse, CategoryTheory.Subobject.lowerEquivalence_unitIso, unit_naturality, CategoryTheory.Sieve.mem_functorPushforward_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Sheaf.isConstant_iff_of_equivalence, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, eq_inducedTopology_of_isDenseSubsite, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.Prod.braiding_inverse, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_iso_hom, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, OrderIso.equivalence_inverse, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, sheafCongrPrecoherent_inverse_obj_val_map, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, CategoryTheory.Comma.toPUnitIdEquiv_inverse_obj_left, core_counitIso_hom_app_iso_inv, sheafCongrPrecoherent_unitIso_hom_app_val_app, OrderHom.equivalenceFunctor_inverse_obj, TwoP.swapEquiv_inverse_map_hom_toFun, cancel_counitInv_right_assoc', CategoryTheory.piEquivalenceFunctorDiscrete_inverse_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.Join.opEquiv_inverse_map_edge_op, symm_counitIso, commAlgCatEquivUnder_inverse_map, CategoryTheory.Discrete.productEquiv_inverse_obj_as, AlgebraicTopology.DoldKan.Compatibility.τ₁_hom_app, unit_app_comp_inverse_map_η_functor, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, CategoryTheory.Limits.Cocone.equivStructuredArrow_inverse, PartOrd.dualEquiv_inverse, CategoryTheory.Mat_.equivalenceSelfOfHasFiniteBiproducts_inverse, CategoryTheory.equivToOverUnit_inverse, functor_map_μ_inverse_comp_counit_app_tensor_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, IsTriangulated.instIsTriangulatedInverseSymmOfFunctor, Action.whiskerLeft_hom, changeFunctor_inverse, core_unitIso_hom_app_iso_hom, symmEquiv_inverse, inverse_additive, NonemptyFinLinOrd.dualEquiv_inverse, sheafCongrPreregular_inverse_obj_val_obj, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, rightOp_unitIso_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_map_app_fst, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.prodOpEquiv_inverse_obj, CategoryTheory.equivEssImageOfReflective_inverse, CategoryTheory.Idempotents.functorExtension_obj_map, unit_app_inverse, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Limits.reflexiveCoforkEquivCofork_inverse_obj_π, CategoryTheory.Functor.inv_fun_map, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_assoc, CategoryTheory.Functor.flipping_inverse_map_app_app, CategoryTheory.Comma.mapRightIso_inverse_obj_hom, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.Idempotents.karoubiUniversal₁_inverse, CategoryTheory.Discrete.sumEquiv_inverse_obj, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, Types.monoOverEquivalenceSet_inverse_obj, SimplicialObject.opEquivalence_inverse, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_inverse, Rep.homEquiv_symm_apply_hom, counitInv_naturality, CategoryTheory.Comma.opEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.equivalence₁_inverse, unit_inverse_comp, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.coalgebraEquivOver_inverse, functor_map_μ_inverse_comp_counitIso_hom_app_tensor, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, commBialgCatEquivComonCommAlgCat_inverse_obj, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.Iso.inverseCompIso_inv_app, CategoryTheory.Comma.equivProd_inverse_obj_left, CategoryTheory.eq_inverse_map, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_obj, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, sheafCongr_inverse, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CategoryTheory.StructuredArrow.prodEquivalence_inverse, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, Action.resEquiv_inverse, CategoryTheory.Discrete.opposite_inverse_obj, CategoryTheory.ShiftedHom.opEquiv_symm_apply, HomologicalComplex.opEquivalence_inverse, CategoryTheory.effectiveEpiFamilyStructOfEquivalence_aux, CategoryTheory.Limits.Cocones.precomposeEquivalence_inverse, CategoryTheory.Limits.cospanOp_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, unit_app_comp_inverse_map_η_functor_assoc, Rep.ihom_coev_app_hom, CategoryTheory.simplicialCosimplicialAugmentedEquiv_inverse, BddLat.dualEquiv_inverse, leftOp_counitIso_hom_app, CategoryTheory.Comma.toPUnitIdEquiv_counitIso_inv_app, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, functor_map_μ_inverse_comp_counit_app_tensor, CategoryTheory.Mon.limit_mon_one, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, mapCommGrp_counitIso, CategoryTheory.MonoidalOpposite.mopEquiv_inverse, CategoryTheory.MorphismProperty.inverseImage_equivalence_functor_eq_map_inverse, CategoryTheory.Under.opEquivOpOver_inverse_obj, Action.rightUnitor_hom_hom, MonObj.mopEquiv_inverse_obj_mon_one, core_counitIso_inv_app_iso_hom, TopCat.Presheaf.presheafEquivOfIso_inverse_obj_obj, partialFunEquivPointed_inverse_map_Dom, CategoryTheory.Iso.inverseCompIso_hom_app, congrLeft_counitIso_hom_app, CategoryTheory.Over.iteratedSliceEquiv_inverse, CategoryTheory.StructuredArrow.mapIso_inverse_obj_left, AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_map_hom, CategoryTheory.Discrete.equivOfEquivalence_symm_apply, unop_inverse, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, CategoryTheory.Under.equivalenceOfIsInitial_inverse_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_inverse, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.ShrinkHoms.equivalence_inverse, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.MonoidalOpposite.unmopEquiv_counitIso_inv_app, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Pi.equivalenceOfEquiv_inverse, preregular_isSheaf_iff_of_essentiallySmall, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.Comon.monoidal_associator_inv_hom, CategoryTheory.Comma.toIdPUnitEquiv_counitIso_inv_app, Action.associator_inv_hom, CategoryTheory.Comon.Comon_EquivMon_OpOp_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_inv_app_unop, CategoryTheory.regularTopology.equalizerCondition_iff_of_equivalence, partialFunEquivPointed_inverse_map_get_coe, CategoryTheory.ShortComplex.functorEquivalence_inverse, CategoryTheory.WithTerminal.liftFromOver_map_app, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, CategoryTheory.cosimplicialSimplicialEquiv_inverse_map, inverseFunctorObjIso_hom, toOrderIso_symm_apply, HomologicalComplex.unopEquivalence_inverse, SimplexCategory.revEquivalence_inverse, congrLeft_inverse, CategoryTheory.Preadditive.commGrpEquivalence_inverse_map, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, inverseFunctorObj'_inv_app, CategoryTheory.Under.equivalenceOfIsInitial_inverse_obj, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_obj_unmop_unmop, symmEquivInverse_obj_unitIso_inv, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.MonoOver.mapIso_inverse, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_inverse, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_snd, congrRight_inverse, CategoryTheory.Sum.functorEquiv_inverse_obj, CategoryTheory.Comma.mapLeftIso_inverse_map_left, CategoryTheory.MonoOver.congr_counitIso, AddCommMonCat.equivalence_inverse_map, CategoryTheory.Functor.flipping_inverse_obj_obj_obj, op_unitIso, CategoryTheory.Limits.coconeEquivalenceOpConeOp_inverse_map_hom, CategoryTheory.Discrete.equivalence_inverse, CategoryTheory.CatCommSq.hInv_iso_hom_app, op_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.Subobject.lowerEquivalence_inverse, isRightAdjoint_inverse, CategoryTheory.orderDualEquivalence_inverse_obj, leftOp_inverse_obj, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, changeInverse_unitIso_hom_app, Action.rightUnitor_inv_hom, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, congrRight_unitIso_hom_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, sheafCongrPrecoherent_functor_map_val_app, CategoryTheory.Monoidal.transportStruct_whiskerLeft, CategoryTheory.Functor.equiv_inverse, ε_comp_map_ε_assoc, core_unitIso_inv_app_iso_hom, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, CategoryTheory.WithInitial.opEquiv_inverse_map, sheafCongr.functor_obj_val_obj, FinBddDistLat.dualEquiv_inverse, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, CategoryTheory.Pretriangulated.triangleRotation_inverse, CategoryTheory.HasExactLimitsOfShape.of_codomain_equivalence, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Limits.opParallelPairIso_inv_app_zero, trans_unitIso, CategoryTheory.Under.postEquiv_unitIso, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.ObjectProperty.topEquivalence_inverse, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, CategoryTheory.Limits.opParallelPairIso_inv_app_one, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one, full_inverse, CategoryTheory.Functor.map_opShiftFunctorEquivalence_counitIso_hom_app_unop_assoc, CategoryTheory.Presheaf.coherentExtensiveEquivalence_inverse_obj_val, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_functor, funInvIdAssoc_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_inverse_obj_obj_fst, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, symmEquivInverse_obj_inverse, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, trans_inverse, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_obj, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂_inverse, CategoryTheory.Functor.leftOpRightOpEquiv_inverse_obj, op_counitIso, CategoryTheory.Comon.monoidal_tensorHom_hom, mapHomologicalComplex_inverse, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, toAdjunction_unit, CategoryTheory.MonoidalOpposite.mopMopEquivalence_counitIso_hom_app, core_unitIso_inv_app_iso_inv, LinOrd.dualEquiv_inverse, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, counitInv_naturality_assoc, CategoryTheory.Comma.toIdPUnitEquiv_inverse_obj_right, CategoryTheory.Idempotents.DoldKan.N_map, CategoryTheory.Comma.mapRightIso_inverse_obj_left, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.comonEquiv_inverse, instIsDenseSubsiteCoherentTopologyInverse, CategoryTheory.Comma.mapRightIso_inverse_map_left, counit_app_functor, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_inv_app_op_one, sheafCongr.counitIso_inv_app_val_app, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Discrete.productEquiv_inverse_map, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, mapAction_inverse, CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_hom_app_op_zero, pi_counitIso, CategoryTheory.Preadditive.commGrpEquivalence_inverse_obj, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, CategoryTheory.ULift.equivalence_inverse, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, inverse_counitInv_comp, CategoryTheory.orderDualEquivalence_inverse_map, IsTriangulated.instIsTriangulatedInverse, core_counitIso_inv_app_iso_inv, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cones.postcomposeEquivalence_inverse, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Final.coconesEquiv_inverse, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, unit_inverse_comp_assoc, symm_inverse, congrRight_counitIso_inv_app, counit_naturality, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_inverse, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_inverse, Action.leftUnitor_hom_hom, commGroupAddCommGroupEquivalence_inverse, DistLat.dualEquiv_inverse, congrRight_counitIso_hom_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_inverse, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Limits.walkingParallelPairOpEquiv_inverse, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, CategoryTheory.Limits.walkingCospanOpEquiv_inverse_map, trans_toAdjunction, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_right, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, changeFunctor_counitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, congrRight_unitIso_inv_app, BddOrd.dualEquiv_inverse, functor_unit_comp_assoc, additive_inverse_of_FullyFaithful, CategoryTheory.Functor.currying_inverse_map_app_app, CategoryTheory.WithTerminal.opEquiv_inverse_map, symmEquivInverse_map_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, essSurj_inverse, prod_inverse, CategoryTheory.Comon.monoidal_tensorObj_comon_comul, MonObj.mopEquiv_inverse_obj_mon_mul, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_inv_app_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_left, CategoryTheory.Functor.currying_inverse_obj_map_app
|
mk 📖 | CompOp | — |
mkHom 📖 | CompOp | 12 mathmath: mkHom_id_inverse, symmEquivFunctor_map, mkIso_hom, congrLeftFunctor_map, mkHom_asNatTrans, mkHom_id_functor, mkHom_comp, mkIso_inv, asNatTrans_mkHom, mkHom_comp_assoc, congrRightFunctor_map, symmEquivInverse_map_app
|
mkIso 📖 | CompOp | 2 mathmath: mkIso_hom, mkIso_inv
|
pow 📖 | CompOp | — |
powNat 📖 | CompOp | — |
refl 📖 | CompOp | 15 mathmath: CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CommShift.instRefl, refl_inverse, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, refl_functor, refl_counitIso, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, refl_toAdjunction, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, pow_zero, isMonoidal_refl, refl_unitIso, IsTriangulated.refl, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst
|
trans 📖 | CompOp | 23 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CommShift.instTrans, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, isMonoidal_trans, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, IsTriangulated.trans, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, trans_counitIso, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, trans_functor, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, trans_unitIso, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, trans_inverse, trans_toAdjunction
|
unit 📖 | CompOp | 38 mathmath: CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, symm_unit, CategoryTheory.Monoidal.instIsMonoidalUnitTransportedEquivalenceTransported, cancel_unit_right, functor_unit_comp, inv_fun_map, CategoryTheory.Sieve.pullback_functorPushforward_equivalence_eq, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.Sum.functorEquiv_unit_app_app_inr, CategoryTheory.Limits.HasColimit.isoOfEquivalence_hom_π, CategoryTheory.Adjunction.Equivalence.instIsMonoidalUnit, cancel_unit_right_assoc, CategoryTheory.toOverIsoToOverUnit_hom_app_left, Equivalence_mk'_unit, cancel_unit_right_assoc', inv_fun_map_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, counitInv_app_functor, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, ε_comp_map_ε, unit_naturality_assoc, unit_app_tensor_comp_inverse_map_δ_functor_assoc, unit_naturality, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, unit_app_comp_inverse_map_η_functor, unit_app_inverse, CategoryTheory.Functor.inv_fun_map, unit_inverse_comp, unit_app_comp_inverse_map_η_functor_assoc, CategoryTheory.Sum.functorEquiv_unit_app_app_inl, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, ε_comp_map_ε_assoc, funInvIdAssoc_inv_app, toAdjunction_unit, unit_app_tensor_comp_inverse_map_δ_functor, unit_inverse_comp_assoc, functor_unit_comp_assoc
|
unitInv 📖 | CompOp | 26 mathmath: CategoryTheory.Sum.natTransOfWhiskerLeftInlInr_app, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, unitInv_naturality, inv_fun_map, funInvIdAssoc_hom_app, counitInv_functor_comp, unitInv_naturality_assoc, cancel_unitInv_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, unitInv_app_inverse, symm_counit, inv_fun_map_assoc, inverse_counitInv_comp_assoc, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_apply_desc, counitInv_functor_comp_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.Sieve.mem_functorPushforward_functor, CategoryTheory.Sieve.functorPushforward_functor, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.Functor.inv_fun_map, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, Equivalence_mk'_unitInv, counit_app_functor, CategoryTheory.Sieve.functorPushforward_equivalence_eq_pullback, inverse_counitInv_comp, symmEquivInverse_map_app
|
unitIso 📖 | CompOp | 390 mathmath: CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_eq, prod_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_zero, leftOp_unitIso_hom_app, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Monad.monadMonEquiv_unitIso_inv_app_toNatTrans_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₀_unitIso_hom_app, CategoryTheory.comonEquiv_unitIso, CategoryTheory.equivOfTensorIsoUnit_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_hom_app_eq, CategoryTheory.Limits.coconeEquivalenceOpConeOp_unitIso, CategoryTheory.equivEssImageOfReflective_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_inv_app, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_inv_app_hom, unitIso_hom_app_comp_inverse_map_η_functor_assoc, CategoryTheory.MonoOver.congr_unitIso, counitInv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.Discrete.sumEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.orderDualEquivalence_unitIso, AddCommMonCat.equivalence_unitIso, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, partialFunEquivPointed_unitIso_hom_app, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.CatCommSq.hInv_iso_inv_app, leftOp_unitIso_inv_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_eq, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂CounitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_inv_app, CategoryTheory.MonoidalCategory.DayFunctor.equiv_unitIso_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, Action.functorCategoryEquivalence_unitIso, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_hom_app, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, HomologicalComplex₂.flipEquivalence_unitIso, CategoryTheory.MonoOver.mapIso_unitIso, CategoryTheory.Functor.currying₃_unitIso_hom_app_app_app_app, CategoryTheory.Pretriangulated.triangleOpEquivalence_unitIso, partialFunEquivPointed_unitIso_inv_app, CategoryTheory.Functor.Final.coconesEquiv_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Monad.algebraEquivOfIsoMonads_unitIso, sheafCongrPreregular_unitIso_hom_app_val_app, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.Over.opEquivOpUnder_unitIso, core_unitIso_hom_app_iso_inv, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, SimplexCategory.revEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inl, CategoryTheory.TwoSquare.equivalenceJ_unitIso, CategoryTheory.Square.flipEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_right, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_inv_app_app_fst, HomologicalComplex.opEquivalence_unitIso, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_inv_app, FinPartOrd.dualEquiv_unitIso, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Preadditive.commGrpEquivalence_unitIso_hom_app, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_eq, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, symm_unitIso, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, mapHomologicalComplex_unitIso, CategoryTheory.CommMon.equivLaxBraidedFunctorPUnit_unitIso, CategoryTheory.Discrete.equivalence_unitIso, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.LocalizerMorphism.LeftResolution.opEquivalence_unitIso, CategoryTheory.StructuredArrow.preEquivalence_unitIso, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Limits.Cocones.precomposeEquivalence_unitIso, CategoryTheory.Comma.equivProd_unitIso_hom_app_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_inv_app, CategoryTheory.Prod.braiding_unitIso, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, CategoryTheory.skeletonEquivalence_unitIso, CategoryTheory.prodOpEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop, CategoryTheory.ObjectProperty.fullSubcategoryCongr_unitIso, changeFunctor_unitIso_hom_app, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.Monoidal.monFunctorCategoryEquivalence_unitIso, CategoryTheory.prod.associativity_unitIso, CategoryTheory.StructuredArrow.prodEquivalence_unitIso, CategoryTheory.ObjectProperty.topEquivalence_unitIso, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, Bipointed.swapEquiv_unitIso_inv_app_toFun, symmEquivInverse_obj_counitIso_hom, CategoryTheory.AsSmall.equiv_unitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.ForgetEnrichment.equiv_unitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_inv_app_shift, MulEquiv.toSingleObjEquiv_unitIso_hom, mapMon_unitIso, pi_unitIso, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_inv_app, CategoryTheory.MonoidalOpposite.mopEquiv_unitIso, CategoryTheory.typeEquiv_unitIso_hom_app, CategoryTheory.Over.postEquiv_inverse, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Pi.optionEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app, CategoryTheory.ULift.equivalence_unitIso_inv, unitIso_hom_app_tensor_comp_inverse_map_δ_functor, rightOp_unitIso_hom_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, unitIso_hom_app_tensor_comp_inverse_map_δ_functor_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.GradedObject.comapEquiv_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_inv_app, CategoryTheory.Pretriangulated.triangleRotation_unitIso, CategoryTheory.Iso.compInverseIso_inv_app, CategoryTheory.Cat.opEquivalence_unitIso, CategoryTheory.Comma.equivProd_unitIso_hom_app_right, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, CategoryTheory.Discrete.sumEquiv_unitIso_hom_app, CategoryTheory.CatCommSq.vInv_iso_hom_app, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.typeEquiv_unitIso_inv_app, TwoP.swapEquiv_unitIso_hom_app_hom_toFun, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.Limits.Cones.whiskeringEquivalence_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, CategoryTheory.Limits.IsLimit.ofConeEquiv_apply_desc, CategoryTheory.forgetEnrichmentOppositeEquivalence_unitIso, CategoryTheory.Under.postEquiv_counitIso, CategoryTheory.MonoidalSingleObj.endMonoidalStarFunctorEquivalence_unitIso, CategoryTheory.Adjunction.toEquivalence_unitIso_hom_app, CategoryTheory.piEquivalenceFunctorDiscrete_unitIso, CategoryTheory.sheafBotEquivalence_unitIso, TopologicalSpace.Opens.mapMapIso_unitIso, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_right, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_left, mapCommGrp_unitIso, CategoryTheory.Limits.Cones.postcomposeEquivalence_unitIso, unitIso_hom_app_comp_inverse_map_η_functor, CategoryTheory.Iso.compInverseIso_hom_app, CategoryTheory.Adjunction.toEquivalence_unitIso_inv_app, HomologicalComplex.unopEquivalence_unitIso, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.Limits.Cocone.equivStructuredArrow_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, congrFullSubcategory_unitIso, mapCommMon_unitIso, changeInverse_unitIso_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_zero_unitIso_hom_app, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, MulEquiv.toSingleObjEquiv_unitIso_inv, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.functorProdFunctorEquiv_unitIso, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, CategoryTheory.ULift.equivalence_unitIso_hom, CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_unitIso, CategoryTheory.prodOpEquiv_unitIso_inv_app, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Monoidal.comonFunctorCategoryEquivalence_unitIso, sheafCongr.unitIso_hom_app_val_app, ModuleCat.matrixEquivalence_unitIso, CategoryTheory.Mon.equivLaxMonoidalFunctorPUnit_unitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_zero, CategoryTheory.CostructuredArrow.prodEquivalence_unitIso, congrLeft_unitIso_inv_app, CategoryTheory.Monoidal.commMonFunctorCategoryEquivalence_unitIso, mapGrp_unitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_hom_app_app_snd, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, CategoryTheory.Functor.leftOpRightOpEquiv_unitIso_hom_app, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_inv_app, congrLeft_unitIso_hom_app, ext_iff, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, symmEquivInverse_obj_counitIso_inv, CoalgCat.comonEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality_assoc, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, changeFunctor_unitIso_inv_app, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.Functor.flipping_unitIso_hom_app_app_app, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, CategoryTheory.Functor.equiv_unitIso, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Comon.Comon_EquivMon_OpOp_unitIso, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality_assoc, CategoryTheory.opOpEquivalence_unitIso, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Functor.flipping_unitIso_inv_app_app_app, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_inv_app_one, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, CategoryTheory.MonoOver.congr_inverse, CategoryTheory.Iso.isoCompInverse_inv_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_naturality, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_unitIso, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, commAlgCatEquivUnder_unitIso, induced_unitIso, MonObj.mopEquiv_unitIso_hom_app_hom, CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app, CategoryTheory.algebraEquivUnder_unitIso, sheafCongrPrecoherent_unitIso_inv_app_val_app, SimplicialObject.opEquivalence_unitIso, CategoryTheory.Over.iteratedSliceEquiv_unitIso, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CatCommSq.vInv_iso_inv_app, counitIso_inv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_left, CategoryTheory.WithInitial.equivComma_unitIso_inv_app_app, CategoryTheory.prod.rightUnitorEquivalence_unitIso, symmEquiv_unitIso, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryTheory.Functor.currying_unitIso_inv_app_app_app, CategoryTheory.Functor.currying_unitIso_hom_app_app_app, SSet.opEquivalence_unitIso, alexDiscEquivPreord_unitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_right, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_inv_app_app_snd, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.Comma.opEquiv_unitIso, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.Under.postEquiv_inverse, CategoryTheory.Functor.opUnopEquiv_unitIso, CategoryTheory.Presheaf.coherentExtensiveEquivalence_unitIso, CategoryTheory.Sum.functorEquiv_unitIso_inv_app_app_inr, CategoryTheory.Functor.currying₃_unitIso_inv_app_app_app_app, OrderHom.equivalenceFunctor_unitIso_hom_app, CategoryTheory.WithInitial.equivComma_unitIso_hom_app_app, CategoryTheory.prod.leftUnitorEquivalence_unitIso, CategoryTheory.shiftEquiv'_unitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop_assoc, groupAddGroupEquivalence_unitIso, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_unitIso, unit_app_tensor_comp_inverse_map_δ_functor_assoc, AlgebraicTopology.DoldKan.Compatibility.υ_hom_app, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_add_unitIso_inv_app_eq, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, CategoryTheory.Subobject.lowerEquivalence_unitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, functor_unitIso_comp, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.Comma.equivProd_unitIso_inv_app_right, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, sheafCongrPrecoherent_unitIso_hom_app_val_app, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, symm_counitIso, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one, CategoryTheory.eq_unitIso, core_unitIso_hom_app_iso_hom, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, rightOp_unitIso_inv_app, commGroupAddCommGroupEquivalence_unitIso, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.Iso.isoCompInverse_hom_app, CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app, CategoryTheory.Idempotents.karoubiUniversal₁_unitIso, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_assoc, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_hom_app, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Square.arrowArrowEquivalence'_unitIso, CategoryTheory.ShortComplex.functorEquivalence_unitIso, CategoryTheory.CategoryOfElements.structuredArrowEquivalence_unitIso, CategoryTheory.TransportEnrichment.forgetEnrichmentEquiv_unitIso, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, CategoryTheory.ShiftedHom.opEquiv_symm_apply, AddMonCat.equivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_unitIso, CategoryTheory.coalgebraEquivOver_unitIso, CategoryTheory.Limits.Cone.equivCostructuredArrow_unitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiForkOfIsLimit_unitIso, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.MonoidalCategory.DayFunctor.equiv_unitIso_inv_app, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_inv_app_unop_assoc, unop_unitIso, CategoryTheory.Limits.walkingSpanOpEquiv_unitIso_hom_app, refl_unitIso, symmEquivInverse_obj_unitIso_inv, counitIso_inv_app_tensor_comp_functor_map_δ_inverse, CategoryTheory.MonoOver.congr_counitIso, op_unitIso, CategoryTheory.Groupoid.invEquivalence_unitIso, CategoryTheory.CatCommSq.hInv_iso_hom_app, CategoryTheory.ShortComplex.opEquiv_unitIso, MonObj.mopEquiv_unitIso_inv_app_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, changeInverse_unitIso_hom_app, Bipointed.swapEquiv_unitIso_hom_app_toFun, CategoryTheory.Monad.monadMonEquiv_unitIso_hom_app_toNatTrans_app, congrRight_unitIso_hom_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_hom_app_hom, CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_hom_app_one, OrderHom.equivalenceFunctor_unitIso_inv_app, CategoryTheory.Under.opEquivOpOver_unitIso, core_unitIso_inv_app_iso_hom, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCoforkOfIsColimit_unitIso, CategoryTheory.Limits.CategoricalPullback.functorEquiv_unitIso_hom_app_app_fst, sheafCongrPreregular_unitIso_inv_app_val_app, CategoryTheory.Square.arrowArrowEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_eq, trans_unitIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, CategoryTheory.Under.postEquiv_unitIso, sheafCongr.unitIso_inv_app_val_app, CategoryTheory.Comma.equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.ShrinkHoms.equivalence_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, CategoryTheory.Limits.walkingCospanOpEquiv_unitIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalence₁UnitIso_inv_app, CategoryTheory.Sum.functorEquiv_unitIso, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_hom_app_eq, core_unitIso_inv_app_iso_inv, sheafCongr_unitIso, CategoryTheory.WithTerminal.equivComma_unitIso_hom_app_app, counitInv_app_tensor_comp_functor_map_δ_inverse_assoc, CategoryTheory.Pretriangulated.shift_unop_opShiftFunctorEquivalence_counitIso_inv_app, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_unitIso_inv_app_hom, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app, OrderIso.equivalence_unitIso, CommShift.instCommShiftHomFunctorUnitIso, CategoryTheory.Functor.map_opShiftFunctorEquivalence_unitIso_hom_app_unop, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, symmEquivInverse_obj_unitIso_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, unit_app_tensor_comp_inverse_map_δ_functor, CategoryTheory.WithTerminal.equivComma_unitIso_inv_app_app, AlgebraicTopology.DoldKan.Compatibility.equivalence₂UnitIso_hom_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.υ_inv_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.RelCat.opEquivalence_unitIso, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_unitIso_hom_app_hom, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_naturality, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_right, TwoP.swapEquiv_unitIso_inv_app_hom_toFun, congrRight_unitIso_inv_app, CategoryTheory.Idempotents.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_hom_app, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_counitIso_hom_app_shift, CategoryTheory.Pretriangulated.opShiftFunctorEquivalence_unitIso_inv_app_assoc
|