Documentation Verification Report

Symmetry

📁 Source: Mathlib/CategoryTheory/Equivalence/Symmetry.lean

Statistics

MetricCount
DefinitionscongrLeftFunctor, inverseFunctor, inverseFunctorObj', inverseFunctorObjIso, symmEquiv, symmEquivFunctor, symmEquivInverse
7
TheoremscongrLeftFunctor_map, congrLeftFunctor_obj, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, inverseFunctorObj'_hom_app, inverseFunctorObj'_inv_app, inverseFunctorObjIso_hom, inverseFunctorObjIso_inv, inverseFunctor_map, inverseFunctor_obj, symmEquivFunctor_map, symmEquivFunctor_obj, symmEquivInverse_map_app, symmEquivInverse_obj_counitIso_hom, symmEquivInverse_obj_counitIso_inv, symmEquivInverse_obj_functor, symmEquivInverse_obj_inverse, symmEquivInverse_obj_unitIso_hom, symmEquivInverse_obj_unitIso_inv, symmEquiv_counitIso, symmEquiv_functor, symmEquiv_inverse, symmEquiv_unitIso
22
Total29

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
congrLeftFunctor 📖CompOp
2 mathmath: congrLeftFunctor_obj, congrLeftFunctor_map
inverseFunctor 📖CompOp
7 mathmath: inverseFunctor_obj, inverseFunctor_map, inverseFunctorObjIso_inv, inverseFunctorObj'_hom_app, inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, inverseFunctorObjIso_hom, inverseFunctorObj'_inv_app
inverseFunctorObj' 📖CompOp
2 mathmath: inverseFunctorObj'_hom_app, inverseFunctorObj'_inv_app
inverseFunctorObjIso 📖CompOp
2 mathmath: inverseFunctorObjIso_inv, inverseFunctorObjIso_hom
symmEquiv 📖CompOp
4 mathmath: symmEquiv_functor, symmEquiv_counitIso, symmEquiv_unitIso, symmEquiv_inverse
symmEquivFunctor 📖CompOp
5 mathmath: symmEquivFunctor_obj, symmEquivFunctor_map, symmEquiv_functor, symmEquiv_counitIso, symmEquiv_unitIso
symmEquivInverse 📖CompOp
10 mathmath: symmEquivInverse_obj_counitIso_hom, symmEquivInverse_obj_functor, symmEquivInverse_obj_counitIso_inv, symmEquiv_counitIso, symmEquiv_unitIso, symmEquiv_inverse, symmEquivInverse_obj_unitIso_inv, symmEquivInverse_obj_inverse, symmEquivInverse_obj_unitIso_hom, symmEquivInverse_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
congrLeftFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.opposite
congrLeftFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
congrLeft
mkHom
CategoryTheory.Functor.whiskeringLeft
inverse
DFunLike.coe
Equiv
Quiver.Hom
functor
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
toAdjunction
asNatTrans
congrLeftFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.opposite
congrLeftFunctor
Opposite.op
congrLeft
inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor 📖mathematicalCategoryTheory.Iso.unop
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Category.opposite
inverseFunctor
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
CategoryTheory.Iso.isoInverseOfIsoFunctor
functorFunctor
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app
inverseFunctorObj'_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
inverseFunctor
CategoryTheory.Iso.hom
inverse
inverseFunctorObj'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inverseFunctorObj'_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
inverseFunctor
CategoryTheory.Iso.inv
inverse
inverseFunctorObj'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inverseFunctorObjIso_hom 📖mathematicalCategoryTheory.Iso.hom
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
inverseFunctor
Opposite.op
inverse
inverseFunctorObjIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inverseFunctorObjIso_inv 📖mathematicalCategoryTheory.Iso.inv
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
inverseFunctor
Opposite.op
inverse
inverseFunctorObjIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
inverseFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
inverseFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
inverse
DFunLike.coe
Equiv
Quiver.Hom
functor
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
toAdjunction
asNatTrans
inverseFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
inverseFunctor
Opposite.op
inverse
symmEquivFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Category.opposite
symmEquivFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
symm
mkHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
inverse
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
toAdjunction
asNatTrans
symmEquivFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Equivalence
instCategory
Opposite
CategoryTheory.Category.opposite
symmEquivFunctor
Opposite.op
symm
symmEquivInverse_map_app 📖mathematicalCategoryTheory.NatTrans.app
functor
Opposite.unop
CategoryTheory.Equivalence
CategoryTheory.Functor.obj
instCategory
Opposite
CategoryTheory.Category.opposite
Opposite.op
symm
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mkHom
Equiv.invFun
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inverse
CategoryTheory.conjugateEquiv
toAdjunction
asNatTrans
CategoryTheory.Functor.map
symmEquivInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
counitInv
Quiver.Hom.unop
unitInv
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
symmEquivInverse_obj_counitIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
functor
Opposite.unop
CategoryTheory.Equivalence
inverse
CategoryTheory.Functor.id
counitIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
CategoryTheory.Iso.inv
unitIso
symmEquivInverse_obj_counitIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
functor
Opposite.unop
CategoryTheory.Equivalence
inverse
CategoryTheory.Functor.id
counitIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
CategoryTheory.Iso.hom
unitIso
symmEquivInverse_obj_functor 📖mathematicalfunctor
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Equivalence
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
inverse
Opposite.unop
symmEquivInverse_obj_inverse 📖mathematicalinverse
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Equivalence
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
functor
Opposite.unop
symmEquivInverse_obj_unitIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
Opposite.unop
CategoryTheory.Equivalence
functor
unitIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
CategoryTheory.Iso.inv
counitIso
symmEquivInverse_obj_unitIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
inverse
Opposite.unop
CategoryTheory.Equivalence
functor
unitIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
instCategory
symmEquivInverse
CategoryTheory.Iso.hom
counitIso
symmEquiv_counitIso 📖mathematicalcounitIso
CategoryTheory.Equivalence
Opposite
instCategory
CategoryTheory.Category.opposite
symmEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
symmEquivInverse
symmEquivFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.op
Opposite.unop
symm
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
symmEquiv_functor 📖mathematicalfunctor
CategoryTheory.Equivalence
Opposite
instCategory
CategoryTheory.Category.opposite
symmEquiv
symmEquivFunctor
symmEquiv_inverse 📖mathematicalinverse
CategoryTheory.Equivalence
Opposite
instCategory
CategoryTheory.Category.opposite
symmEquiv
symmEquivInverse
symmEquiv_unitIso 📖mathematicalunitIso
CategoryTheory.Equivalence
Opposite
instCategory
CategoryTheory.Category.opposite
symmEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
symmEquivFunctor
symmEquivInverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj

---

← Back to Index