| Name | Category | Theorems |
EssImageSubcategory 📖 | CompOp | 21 mathmath: CategoryTheory.equivEssImageOfReflective_unitIso, EssImageSubcategory.associator_inv_def, EssImageSubcategory.associator_hom_def, Faithful.toEssImage, EssImageSubcategory.tensor_obj, essImage.liftFunctorCompIso_hom_app, toEssImage_map_hom, CategoryTheory.equivEssImageOfReflective_functor, EssImageSubcategory.toUnit_def, essImage.liftFunctorCompIso_inv_app, CategoryTheory.equivEssImageOfReflective_inverse, essImage.liftFunctor_obj, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, toEssImage_obj_obj, essImage.liftFunctor_map, EssImageSubcategory.lift_def, Full.toEssImage
|
essImage 📖 | CompOp | 56 mathmath: CategoryTheory.ObjectProperty.instIsTriangulatedEssImageOfIsTriangulatedOfFull, CategoryTheory.equivEssImageOfReflective_unitIso, CondensedSet.mem_locallyConstant_essImage_of_isColimit_mapCocone, EssImageSubcategory.associator_inv_def, CategoryTheory.mem_essImage_of_unit_isSplitMono, CondensedMod.isDiscrete_tfae, EssImageSubcategory.associator_hom_def, Faithful.toEssImage, LightCondMod.isDiscrete_tfae, AlgebraicGeometry.AffineScheme.mk_obj, CategoryTheory.Sheaf.mem_essImage_of_isConstant, obj_mem_essImage, CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful, EssImageSubcategory.tensor_obj, CategoryTheory.essImage_yonedaMon, essImage_ι_comp, essImage_mapGrp, essImage_comp_of_essSurj, CategoryTheory.essImage_yonedaGrp, essImage_underPost, toEssImage_map_hom, CategoryTheory.Adjunction.mem_essImage_of_counit_isIso, CategoryTheory.equivEssImageOfReflective_functor, CategoryTheory.Adjunction.isIso_unit_app_iff_mem_essImage, essImage_eq_of_natIso, EssSurj.mem_essImage, essImage_comp_apply_of_essSurj, AlgebraicGeometry.AffineScheme.forgetToScheme_map, CategoryTheory.instIsIsoAppUnitReflectorAdjunctionObjEssImage, AlgebraicGeometry.isAffine_affineScheme, EssImageSubcategory.toUnit_def, CondensedSet.isDiscrete_tfae, CategoryTheory.Sheaf.isConstant_iff_mem_essImage, CategoryTheory.Limits.instIsClosedUnderColimitsOfShapeEssImageOfHasColimitsOfShapeOfPreservesColimitsOfShapeOfFullOfFaithful, CategoryTheory.equivEssImageOfReflective_inverse, LightCondSet.mem_locallyConstant_essImage_of_isColimit_mapCocone, essImage_mapMon, instIsClosedUnderIsomorphismsEssImage, LightCondSet.isDiscrete_tfae, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, AlgebraicGeometry.AffineScheme.forgetToScheme_obj, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, essImage_overPost, toEssImage_obj_obj, AlgebraicGeometry.isIso_fromTildeΓ_iff, EssImageSubcategory.lift_def, CategoryTheory.Adjunction.isIso_counit_app_iff_mem_essImage, Full.toEssImage, CategoryTheory.Sheaf.IsConstant.mem_essImage, AlgebraicGeometry.essImage_Spec, CategoryTheory.mem_essImage_of_counit_isSplitEpi, essImage_ext_iff, CategoryTheory.Adjunction.mem_essImage_of_unit_isIso
|
objObjPreimageIso 📖 | CompOp | 3 mathmath: essImage.liftFunctorCompIso_hom_app, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_map
|
objPreimage 📖 | CompOp | 4 mathmath: essImage.liftFunctorCompIso_hom_app, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_obj, essImage.liftFunctor_map
|
toEssImage 📖 | CompOp | 14 mathmath: Faithful.toEssImage, essImage.liftFunctorCompIso_hom_app, toEssImage_map_hom, CategoryTheory.equivEssImageOfReflective_functor, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_obj, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, toEssImage_obj_obj, essImage.liftFunctor_map, Full.toEssImage
|
toEssImageCompι 📖 | CompOp | 2 mathmath: toEssImageCompι_inv_app, toEssImageCompι_hom_app
|