Documentation Verification Report

EssentialImage

📁 Source: Mathlib/CategoryTheory/EssentialImage.lean

Statistics

MetricCount
DefinitionsEssImageSubcategory, essImage, getIso, liftFunctor, liftFunctorCompIso, witness, objObjPreimageIso, objPreimage, toEssImage, toEssImageCompι
10
Theoremsmem_essImage, toEssImage, toEssImage, toEssImage, liftFunctorCompIso_hom_app, liftFunctorCompIso_inv_app, liftFunctor_map, liftFunctor_obj, ofIso, ofNatIso, essImage_comp_apply_of_essSurj, essImage_comp_of_essSurj, essImage_eq_of_natIso, essImage_ext, essImage_ι_comp, essSurj_comp, essSurj_of_comp_fully_faithful, essSurj_of_iso, essSurj_of_surj, instEssSurjId, instIsClosedUnderIsomorphismsEssImage, obj_mem_essImage, toEssImageCompι_hom_app, toEssImageCompι_inv_app, toEssImage_map_hom, toEssImage_obj_obj
26
Total36

CategoryTheory.Functor

Definitions

NameCategoryTheorems
EssImageSubcategory 📖CompOp
21 mathmath: CategoryTheory.equivEssImageOfReflective_unitIso, EssImageSubcategory.associator_inv_def, EssImageSubcategory.associator_hom_def, Faithful.toEssImage, EssImageSubcategory.tensor_obj, essImage.liftFunctorCompIso_hom_app, toEssImage_map_hom, CategoryTheory.equivEssImageOfReflective_functor, EssImageSubcategory.toUnit_def, essImage.liftFunctorCompIso_inv_app, CategoryTheory.equivEssImageOfReflective_inverse, essImage.liftFunctor_obj, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, toEssImage_obj_obj, essImage.liftFunctor_map, EssImageSubcategory.lift_def, Full.toEssImage
essImage 📖CompOp
56 mathmath: CategoryTheory.ObjectProperty.instIsTriangulatedEssImageOfIsTriangulatedOfFull, CategoryTheory.equivEssImageOfReflective_unitIso, CondensedSet.mem_locallyConstant_essImage_of_isColimit_mapCocone, EssImageSubcategory.associator_inv_def, CategoryTheory.mem_essImage_of_unit_isSplitMono, CondensedMod.isDiscrete_tfae, EssImageSubcategory.associator_hom_def, Faithful.toEssImage, LightCondMod.isDiscrete_tfae, AlgebraicGeometry.AffineScheme.mk_obj, CategoryTheory.Sheaf.mem_essImage_of_isConstant, obj_mem_essImage, CategoryTheory.Limits.instIsClosedUnderLimitsOfShapeEssImageOfHasLimitsOfShapeOfPreservesLimitsOfShapeOfFullOfFaithful, EssImageSubcategory.tensor_obj, CategoryTheory.essImage_yonedaMon, essImage_ι_comp, essImage_mapGrp, essImage_comp_of_essSurj, CategoryTheory.essImage_yonedaGrp, essImage_underPost, toEssImage_map_hom, CategoryTheory.Adjunction.mem_essImage_of_counit_isIso, CategoryTheory.equivEssImageOfReflective_functor, CategoryTheory.Adjunction.isIso_unit_app_iff_mem_essImage, essImage_eq_of_natIso, EssSurj.mem_essImage, essImage_comp_apply_of_essSurj, AlgebraicGeometry.AffineScheme.forgetToScheme_map, CategoryTheory.instIsIsoAppUnitReflectorAdjunctionObjEssImage, AlgebraicGeometry.isAffine_affineScheme, EssImageSubcategory.toUnit_def, CondensedSet.isDiscrete_tfae, CategoryTheory.Sheaf.isConstant_iff_mem_essImage, CategoryTheory.Limits.instIsClosedUnderColimitsOfShapeEssImageOfHasColimitsOfShapeOfPreservesColimitsOfShapeOfFullOfFaithful, CategoryTheory.equivEssImageOfReflective_inverse, LightCondSet.mem_locallyConstant_essImage_of_isColimit_mapCocone, essImage_mapMon, instIsClosedUnderIsomorphismsEssImage, LightCondSet.isDiscrete_tfae, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, AlgebraicGeometry.AffineScheme.forgetToScheme_obj, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, essImage_overPost, toEssImage_obj_obj, AlgebraicGeometry.isIso_fromTildeΓ_iff, EssImageSubcategory.lift_def, CategoryTheory.Adjunction.isIso_counit_app_iff_mem_essImage, Full.toEssImage, CategoryTheory.Sheaf.IsConstant.mem_essImage, AlgebraicGeometry.essImage_Spec, CategoryTheory.mem_essImage_of_counit_isSplitEpi, essImage_ext_iff, CategoryTheory.Adjunction.mem_essImage_of_unit_isIso
objObjPreimageIso 📖CompOp
3 mathmath: essImage.liftFunctorCompIso_hom_app, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_map
objPreimage 📖CompOp
4 mathmath: essImage.liftFunctorCompIso_hom_app, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_obj, essImage.liftFunctor_map
toEssImage 📖CompOp
14 mathmath: Faithful.toEssImage, essImage.liftFunctorCompIso_hom_app, toEssImage_map_hom, CategoryTheory.equivEssImageOfReflective_functor, essImage.liftFunctorCompIso_inv_app, essImage.liftFunctor_obj, CategoryTheory.Equivalence.fullyFaithfulToEssImage, toEssImageCompι_inv_app, EssSurj.toEssImage, toEssImageCompι_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso, toEssImage_obj_obj, essImage.liftFunctor_map, Full.toEssImage
toEssImageCompι 📖CompOp
2 mathmath: toEssImageCompι_inv_app, toEssImageCompι_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
essImage_comp_apply_of_essSurj 📖mathematicalessImage
comp
EssSurj.mem_essImage
essImage_comp_of_essSurj 📖mathematicalessImage
comp
essImage_comp_apply_of_essSurj
essImage_eq_of_natIso 📖mathematicalessImageessImage.ofNatIso
essImage_ext 📖map
CategoryTheory.ObjectProperty.FullSubcategory
essImage
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ι
map_injective
CategoryTheory.ObjectProperty.faithful_ι
essImage_ι_comp 📖mathematicalessImage
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
comp
CategoryTheory.ObjectProperty.ι
CategoryTheory.ObjectProperty.map
CategoryTheory.ObjectProperty.FullSubcategory.property
essSurj_comp 📖mathematicalEssSurj
comp
essSurj_of_comp_fully_faithful 📖mathematicalEssSurj
essSurj_of_iso 📖mathematicalEssSurjessImage.ofNatIso
EssSurj.mem_essImage
essSurj_of_surj 📖mathematicalobjEssSurjobj_mem_essImage
instEssSurjId 📖mathematicalEssSurj
id
instIsClosedUnderIsomorphismsEssImage 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
essImage
essImage.ofIso
obj_mem_essImage 📖mathematicalessImage
obj
toEssImageCompι_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.ObjectProperty.FullSubcategory
essImage
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.lift
obj_mem_essImage
CategoryTheory.ObjectProperty.ι
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
EssImageSubcategory
toEssImage
toEssImageCompι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
obj_mem_essImage
toEssImageCompι_inv_app 📖mathematicalCategoryTheory.NatTrans.app
comp
CategoryTheory.ObjectProperty.FullSubcategory
essImage
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.lift
obj_mem_essImage
CategoryTheory.ObjectProperty.ι
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
EssImageSubcategory
toEssImage
toEssImageCompι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
obj_mem_essImage
toEssImage_map_hom 📖mathematicalCategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
essImage
CategoryTheory.ObjectProperty.FullSubcategory.obj
obj
obj_mem_essImage
map
EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
toEssImage
obj_mem_essImage
toEssImage_obj_obj 📖mathematicalCategoryTheory.ObjectProperty.FullSubcategory.obj
essImage
obj
EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
toEssImage

CategoryTheory.Functor.EssSurj

Theorems

NameKindAssumesProvesValidatesDepends On
mem_essImage 📖mathematicalCategoryTheory.Functor.essImage
toEssImage 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.Functor.toEssImage

CategoryTheory.Functor.Faithful

Theorems

NameKindAssumesProvesValidatesDepends On
toEssImage 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.obj_mem_essImage
CategoryTheory.ObjectProperty.instFaithfulFullSubcategoryLift

CategoryTheory.Functor.Full

Theorems

NameKindAssumesProvesValidatesDepends On
toEssImage 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.essImage
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.obj_mem_essImage
CategoryTheory.ObjectProperty.instFullFullSubcategoryLift

CategoryTheory.Functor.essImage

Definitions

NameCategoryTheorems
getIso 📖CompOp
liftFunctor 📖CompOp
4 mathmath: liftFunctorCompIso_hom_app, liftFunctorCompIso_inv_app, liftFunctor_obj, liftFunctor_map
liftFunctorCompIso 📖CompOp
2 mathmath: liftFunctorCompIso_hom_app, liftFunctorCompIso_inv_app
witness 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
liftFunctorCompIso_hom_app 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
liftFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFunctorCompIso
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.objPreimage
CategoryTheory.Functor.EssSurj.toEssImage
CategoryTheory.Functor.objObjPreimageIso
liftFunctorCompIso_inv_app 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
liftFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFunctorCompIso
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.objPreimage
CategoryTheory.Functor.EssSurj.toEssImage
CategoryTheory.Functor.objObjPreimageIso
liftFunctor_map 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
liftFunctor
CategoryTheory.Functor.preimage
CategoryTheory.Functor.objPreimage
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.EssSurj.toEssImage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.hom
CategoryTheory.Functor.objObjPreimageIso
CategoryTheory.Iso.inv
CategoryTheory.Functor.EssSurj.toEssImage
liftFunctor_obj 📖mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Functor.obj
liftFunctor
CategoryTheory.Functor.objPreimage
CategoryTheory.Functor.EssImageSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Functor.toEssImage
CategoryTheory.Functor.EssSurj.toEssImage
ofIso 📖CategoryTheory.Functor.essImageNonempty.map
ofNatIso 📖CategoryTheory.Functor.essImageNonempty.map

---

← Back to Index