EssentiallySmall
📁 Source: Mathlib/CategoryTheory/EssentiallySmall.lean
Statistics
CategoryTheory
Definitions
Theorems
CategoryTheory.Discrete
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
essentiallySmallOfSmall 📖 | mathematical | — | CategoryTheory.EssentiallySmallCategoryTheory.DiscreteCategoryTheory.discreteCategory | — | — |
CategoryTheory.EssentiallySmall
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
equiv_smallCategory 📖 | mathematical | — | CategoryTheory.Equivalence | — | — |
mk' 📖 | mathematical | — | CategoryTheory.EssentiallySmall | — | — |
CategoryTheory.LocallySmall
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
hom_small 📖 | mathematical | — | SmallQuiver.HomCategoryTheory.CategoryStruct.toQuiverCategoryTheory.Category.toCategoryStruct | — | — |
CategoryTheory.Shrink
Definitions
| Name | Category | Theorems |
|---|---|---|
equivalence 📖 | CompOp | — |
instCategoryShrink 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instLocallySmallShrink 📖 | mathematical | — | CategoryTheory.LocallySmallShrinkinstCategoryShrink | — | CategoryTheory.locallySmall_of_faithfulCategoryTheory.Equivalence.faithful_inverse |
CategoryTheory.ShrinkHoms
Definitions
| Name | Category | Theorems |
|---|---|---|
equivalence 📖 | CompOp | |
fromShrinkHoms 📖 | CompOp | |
functor 📖 | CompOp | |
instCategory 📖 | CompOp | 20 mathmath:id_def, isGrothendieckAbelian, instIsDiscrete, CategoryTheory.hasCardinalLT_arrow_shrinkHoms_iff, equivalence_functor, hasFiniteLimits, CategoryTheory.instWellPoweredShrinkHoms, hasLimitsOfShape, instAdditiveInverse, equivalence_counitIso, instIsEquivalenceInverse, comp_def, inverse_map, equivalence_inverse, instIsEquivalenceFunctor, functor_map, functor_obj, equivalence_unitIso, inverse_obj, instAdditiveFunctor |
instUnique 📖 | CompOp | — |
inverse 📖 | CompOp | |
toShrinkHoms 📖 | CompOp |
Theorems
---