Documentation Verification Report

EssentiallySmall

📁 Source: Mathlib/CategoryTheory/EssentiallySmall.lean

Statistics

MetricCount
Definitionsequivalence, instCategoryShrink, ShrinkHoms, equivalence, fromShrinkHoms, functor, instCategory, instUnique, inverse, toShrinkHoms, SmallModel, equivSmallModel, smallCategorySmallModel
13
TheoremsessentiallySmallOfSmall, equiv_smallCategory, mk', hom_small, instLocallySmallShrink, comp_def, equivalence_counitIso, equivalence_functor, equivalence_inverse, equivalence_unitIso, from_to, functor_map, functor_obj, id_def, instIsDiscrete, instIsEquivalenceFunctor, instIsEquivalenceInverse, inverse_map, inverse_obj, to_from, essentiallySmallSelf, essentiallySmall_congr, essentiallySmall_fullSubcategory_mem, essentiallySmall_iff, essentiallySmall_iff_of_thin, essentiallySmall_of_fully_faithful, essentiallySmall_of_small_of_locallySmall, instEssentiallySmallOpposite, instLocallySmallFunctor, instLocallySmallOpposite, instLocallySmallSmallModel, instSmallArrowOfLocallySmall, instSmallDiscrete, instSmallFunctorOfLocallySmall, instSmallHomOfLocallySmall, locallySmall_congr, locallySmall_fullSubcategory, locallySmall_max, locallySmall_of_essentiallySmall, locallySmall_of_faithful, locallySmall_of_thin, locallySmall_of_univLE, locallySmall_self, small_skeleton_of_essentiallySmall
44
Total57

CategoryTheory

Definitions

NameCategoryTheorems
ShrinkHoms 📖CompOp
20 mathmath: ShrinkHoms.id_def, ShrinkHoms.isGrothendieckAbelian, ShrinkHoms.instIsDiscrete, hasCardinalLT_arrow_shrinkHoms_iff, ShrinkHoms.equivalence_functor, ShrinkHoms.hasFiniteLimits, instWellPoweredShrinkHoms, ShrinkHoms.hasLimitsOfShape, ShrinkHoms.instAdditiveInverse, ShrinkHoms.equivalence_counitIso, ShrinkHoms.instIsEquivalenceInverse, ShrinkHoms.comp_def, ShrinkHoms.inverse_map, ShrinkHoms.equivalence_inverse, ShrinkHoms.instIsEquivalenceFunctor, ShrinkHoms.functor_map, ShrinkHoms.functor_obj, ShrinkHoms.equivalence_unitIso, ShrinkHoms.inverse_obj, ShrinkHoms.instAdditiveFunctor
SmallModel 📖CompOp
5 mathmath: Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, instLocallySmallSmallModel, Equivalence.instPrecoherentSmallModel, Equivalence.preregular_isSheaf_iff_of_essentiallySmall, Equivalence.instPreregularSmallModel
equivSmallModel 📖CompOp
2 mathmath: Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, Equivalence.preregular_isSheaf_iff_of_essentiallySmall
smallCategorySmallModel 📖CompOp
5 mathmath: Equivalence.precoherent_isSheaf_iff_of_essentiallySmall, instLocallySmallSmallModel, Equivalence.instPrecoherentSmallModel, Equivalence.preregular_isSheaf_iff_of_essentiallySmall, Equivalence.instPreregularSmallModel

Theorems

NameKindAssumesProvesValidatesDepends On
essentiallySmallSelf 📖mathematicalEssentiallySmallEssentiallySmall.mk'
essentiallySmall_congr 📖mathematicalEssentiallySmallEssentiallySmall.mk'
essentiallySmall_fullSubcategory_mem 📖mathematicalEssentiallySmall
ObjectProperty.FullSubcategory
Set
Set.instMembership
ObjectProperty.FullSubcategory.category
small_of_injective
ObjectProperty.FullSubcategory.property
ObjectProperty.FullSubcategory.ext
essentiallySmall_of_small_of_locallySmall
locallySmall_fullSubcategory
essentiallySmall_iff 📖mathematicalEssentiallySmall
Small
Skeleton
LocallySmall
locallySmall_of_essentiallySmall
Equivalence.inducedFunctorOfEquiv
essentiallySmall_iff_of_thin 📖mathematicalQuiver.IsThin
CategoryStruct.toQuiver
Category.toCategoryStruct
EssentiallySmall
Small
Skeleton
essentiallySmall_of_fully_faithful 📖mathematicalEssentiallySmallessentiallySmall_iff
small_of_injective
small_skeleton_of_essentiallySmall
Functor.mapSkeleton_injective
locallySmall_of_faithful
locallySmall_of_essentiallySmall
essentiallySmall_of_small_of_locallySmall 📖mathematicalEssentiallySmallessentiallySmall_iff
small_of_surjective
instEssentiallySmallOpposite 📖mathematicalEssentiallySmall
Opposite
Category.opposite
EssentiallySmall.mk'
instLocallySmallFunctor 📖mathematicalLocallySmall
Functor
Functor.category
small_of_injective
small_Pi
UnivLE.small
UnivLE.self
instSmallHomOfLocallySmall
NatTrans.ext'
instLocallySmallOpposite 📖mathematicalLocallySmall
Opposite
Category.opposite
small_of_injective
instSmallHomOfLocallySmall
Equiv.injective
instLocallySmallSmallModel 📖mathematicalLocallySmall
SmallModel
smallCategorySmallModel
locallySmall_congr
instSmallArrowOfLocallySmall 📖mathematicalSmall
Arrow
small_of_injective
small_sigma
instSmallHomOfLocallySmall
instSmallDiscrete 📖mathematicalSmall
Discrete
small_map
instSmallFunctorOfLocallySmall 📖mathematicalSmall
Functor
small_of_injective
small_Pi
instSmallArrowOfLocallySmall
Functor.ext
Arrow.mk_eq_mk_iff
instSmallHomOfLocallySmall 📖mathematicalSmall
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
LocallySmall.hom_small
locallySmall_congr 📖mathematicalLocallySmalllocallySmall_of_faithful
Equivalence.faithful_inverse
Equivalence.faithful_functor
locallySmall_fullSubcategory 📖mathematicalLocallySmall
ObjectProperty.FullSubcategory
ObjectProperty.FullSubcategory.category
locallySmall_of_faithful
ObjectProperty.faithful_ι
locallySmall_max 📖mathematicalLocallySmallsmall_max
locallySmall_of_essentiallySmall 📖mathematicalLocallySmalllocallySmall_congr
locallySmall_self
locallySmall_of_faithful 📖mathematicalLocallySmallsmall_of_injective
instSmallHomOfLocallySmall
Functor.map_injective
locallySmall_of_thin 📖mathematicalQuiver.IsThin
CategoryStruct.toQuiver
Category.toCategoryStruct
LocallySmallsmall_subsingleton
locallySmall_of_univLE 📖mathematicalLocallySmallUnivLE.small
locallySmall_self 📖mathematicalLocallySmallUnivLE.small
UnivLE.self
small_skeleton_of_essentiallySmall 📖mathematicalSmall
Skeleton
essentiallySmall_iff

CategoryTheory.Discrete

Theorems

NameKindAssumesProvesValidatesDepends On
essentiallySmallOfSmall 📖mathematicalCategoryTheory.EssentiallySmall
CategoryTheory.Discrete
CategoryTheory.discreteCategory

CategoryTheory.EssentiallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_smallCategory 📖mathematicalCategoryTheory.Equivalence
mk' 📖mathematicalCategoryTheory.EssentiallySmall

CategoryTheory.LocallySmall

Theorems

NameKindAssumesProvesValidatesDepends On
hom_small 📖mathematicalSmall
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Shrink

Definitions

NameCategoryTheorems
equivalence 📖CompOp
instCategoryShrink 📖CompOp
2 mathmath: instLocallySmallShrink, CategoryTheory.hasCardinalLT_arrow_shrink_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instLocallySmallShrink 📖mathematicalCategoryTheory.LocallySmall
Shrink
instCategoryShrink
CategoryTheory.locallySmall_of_faithful
CategoryTheory.Equivalence.faithful_inverse

CategoryTheory.ShrinkHoms

Definitions

NameCategoryTheorems
equivalence 📖CompOp
4 mathmath: equivalence_functor, equivalence_counitIso, equivalence_inverse, equivalence_unitIso
fromShrinkHoms 📖CompOp
6 mathmath: id_def, to_from, from_to, comp_def, inverse_map, inverse_obj
functor 📖CompOp
7 mathmath: equivalence_functor, equivalence_counitIso, instIsEquivalenceFunctor, functor_map, functor_obj, equivalence_unitIso, instAdditiveFunctor
instCategory 📖CompOp
20 mathmath: id_def, isGrothendieckAbelian, instIsDiscrete, CategoryTheory.hasCardinalLT_arrow_shrinkHoms_iff, equivalence_functor, hasFiniteLimits, CategoryTheory.instWellPoweredShrinkHoms, hasLimitsOfShape, instAdditiveInverse, equivalence_counitIso, instIsEquivalenceInverse, comp_def, inverse_map, equivalence_inverse, instIsEquivalenceFunctor, functor_map, functor_obj, equivalence_unitIso, inverse_obj, instAdditiveFunctor
instUnique 📖CompOp
inverse 📖CompOp
7 mathmath: instAdditiveInverse, equivalence_counitIso, instIsEquivalenceInverse, inverse_map, equivalence_inverse, equivalence_unitIso, inverse_obj
toShrinkHoms 📖CompOp
3 mathmath: to_from, from_to, functor_obj

Theorems

NameKindAssumesProvesValidatesDepends On
comp_def 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShrinkHoms
CategoryTheory.Category.toCategoryStruct
instCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
fromShrinkHoms
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
Equiv.symm
equivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.ShrinkHoms
instCategory
equivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
equivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.ShrinkHoms
instCategory
equivalence
functor
equivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.ShrinkHoms
instCategory
equivalence
inverse
equivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.ShrinkHoms
instCategory
equivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
from_to 📖mathematicaltoShrinkHoms
fromShrinkHoms
functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShrinkHoms
instCategory
functor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Shrink
CategoryTheory.instSmallHomOfLocallySmall
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
CategoryTheory.instSmallHomOfLocallySmall
functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShrinkHoms
instCategory
functor
toShrinkHoms
id_def 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.ShrinkHoms
CategoryTheory.Category.toCategoryStruct
instCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
fromShrinkHoms
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
instIsDiscrete 📖mathematicalCategoryTheory.IsDiscrete
CategoryTheory.ShrinkHoms
instCategory
CategoryTheory.locallySmall_of_univLE
univLE_of_max
UnivLE.self
CategoryTheory.locallySmall_of_univLE
univLE_of_max
UnivLE.self
Shrink.ext
CategoryTheory.IsDiscrete.subsingleton
CategoryTheory.IsDiscrete.eq_of_hom
instIsEquivalenceFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.ShrinkHoms
instCategory
functor
CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceInverse 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.ShrinkHoms
instCategory
inverse
CategoryTheory.Equivalence.isEquivalence_inverse
inverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShrinkHoms
instCategory
inverse
DFunLike.coe
Equiv
Shrink
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
fromShrinkHoms
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
inverse_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShrinkHoms
instCategory
inverse
fromShrinkHoms
to_from 📖mathematicalfromShrinkHoms
toShrinkHoms

---

← Back to Index