Documentation Verification Report

Extensive

πŸ“ Source: Mathlib/CategoryTheory/Extensive.lean

Statistics

MetricCount
DefinitionsFinitaryExtensive, FinitaryPreExtensive, HasPullbacksOfInclusions, PreservesPullbacksOfInclusions, Extensive, finitaryExtensiveTopCatAux
6
TheoremshasFiniteCoproducts, hasPullbacksOfInclusions, isPullback_initial_to, isPullback_initial_to_binaryCofan, isPullback_initial_to_sigma_ΞΉ, isVanKampen_finiteCoproducts, isVanKampen_finiteCoproducts_Fin, mono_inl_of_isColimit, mono_inr_of_isColimit, mono_ΞΉ, toFinitaryPreExtensive, vanKampen, van_kampen', hasFiniteCoproducts, hasPullbacksOfInclusions, hasPullbacks_of_inclusions, hasPullbacks_of_is_coproduct, isIso_sigmaDesc_fst, isIso_sigmaDesc_map, isPullback_sigmaDesc, isUniversal_finiteCoproducts, isUniversal_finiteCoproducts_Fin, universal', hasPullbackInl, hasPullbackInr, hasPullbackInr', instOfHasPullbacks, preservesPullbackInl', instOfPreservesLimitsOfShapeWalkingCospan, preservesPullbackInl, preservesPullbackInl', preservesPullbackInr, preservesPullbackInr', finitaryExtensive_TopCat, finitaryExtensive_functor, finitaryExtensive_iff_of_isTerminal, finitaryExtensive_of_preserves_and_reflects, finitaryExtensive_of_preserves_and_reflects_isomorphism, finitaryExtensive_of_reflective, hasStrictInitialObjects_of_finitaryPreExtensive, instCoproductsOfShapeDisjointOfFinitaryExtensiveOfFinite, instMonoCoprodOfFinitaryExtensive, instMonoΞΉ, instPreservesLimitWalkingCospanCospanOfIsIso, instPreservesLimitWalkingCospanCospanOfIsIso_1, finitaryExtensive
46
Total52

CategoryTheory

Definitions

NameCategoryTheorems
FinitaryExtensive πŸ“–CompData
12 mathmath: finitaryExtensive_iff_of_isTerminal, CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions, AlgebraicGeometry.instFinitaryExtensiveScheme, finitaryExtensive_of_reflective, SheafOfTypes.finitary_extensive, finitaryExtensive_of_preserves_and_reflects_isomorphism, instFinitaryExtensiveSheafOfHasPullbacksOfHasSheafify, finitaryExtensive_TopCat, finitaryExtensive_functor, types.finitaryExtensive, finitaryExtensive_of_preserves_and_reflects, CompHausLike.finitaryExtensive
FinitaryPreExtensive πŸ“–CompData
1 mathmath: FinitaryExtensive.toFinitaryPreExtensive
HasPullbacksOfInclusions πŸ“–CompData
4 mathmath: CompHausLike.instHasPullbacksOfInclusionsOfHasExplicitPullbacksOfInclusions, FinitaryPreExtensive.hasPullbacksOfInclusions, HasPullbacksOfInclusions.instOfHasPullbacks, FinitaryExtensive.hasPullbacksOfInclusions
PreservesPullbacksOfInclusions πŸ“–CompData
2 mathmath: CompHausLike.instPreservesPullbacksOfInclusionsTopCatCompHausLikeToTopOfHasExplicitPullbacksOfInclusions, PreservesPullbacksOfInclusions.instOfPreservesLimitsOfShapeWalkingCospan
finitaryExtensiveTopCatAux πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finitaryExtensive_TopCat πŸ“–mathematicalβ€”FinitaryExtensive
TopCat
TopCat.instCategory
β€”finitaryExtensive_iff_of_isTerminal
Limits.hasFiniteCoproducts_of_hasFiniteColimits
Limits.hasFiniteColimits_of_hasColimits
TopCat.topCat_hasColimits
HasPullbacksOfInclusions.instOfHasPullbacks
Limits.hasColimitsOfShape_discrete
Finite.of_fintype
Limits.hasLimitsOfShape_widePullbackShape
Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Limits.hasFiniteLimits_of_hasLimits
TopCat.topCat_hasLimits
CommSq.w
Sum.inl_injective
ConcreteCategory.congr_hom
Limits.PullbackCone.condition
Topology.IsInducing.continuous_iff
Topology.IsEmbedding.isInducing
Topology.IsEmbedding.inl
ContinuousMap.continuous_toFun
TopCat.ext
Limits.IsTerminal.hom_ext
Sum.inr_injective
Topology.IsEmbedding.inr
finitaryExtensive_functor πŸ“–mathematicalβ€”FinitaryExtensive
Functor
Functor.category
β€”Limits.functorCategoryHasColimitsOfShape
Limits.hasColimitsOfShape_discrete
FinitaryExtensive.hasFiniteCoproducts
Finite.of_fintype
HasPullbacksOfInclusions.instOfHasPullbacks
Limits.functorCategoryHasLimitsOfShape
isVanKampenColimit_of_evaluation
FinitaryExtensive.vanKampen
Limits.evaluation_preservesColimit
Limits.hasColimitOfHasColimitsOfShape
finitaryExtensive_iff_of_isTerminal πŸ“–mathematicalβ€”FinitaryExtensive
IsVanKampenColimit
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
β€”Limits.hasColimitsOfShape_discrete
Finite.of_fintype
FinitaryExtensive.van_kampen'
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
IsPullback.paste_vert_iff
finitaryExtensive_of_preserves_and_reflects πŸ“–mathematicalβ€”FinitaryExtensiveβ€”Limits.hasColimitsOfShape_discrete
Finite.of_fintype
IsVanKampenColimit.of_iso
Limits.hasColimitOfHasColimitsOfShape
PreservesPullbacksOfInclusions.preservesPullbackInl'
PreservesPullbacksOfInclusions.preservesPullbackInr'
IsVanKampenColimit.of_mapCocone
instPreservesLimitWalkingCospanCospanOfIsIso_1
Functor.map_isIso
Discrete.instIsIso
FinitaryExtensive.vanKampen
Limits.PreservesColimitsOfShape.preservesColimit
finitaryExtensive_of_preserves_and_reflects_isomorphism πŸ“–mathematicalβ€”FinitaryExtensiveβ€”finitaryExtensive_of_preserves_and_reflects
HasPullbacksOfInclusions.instOfHasPullbacks
Limits.hasColimitsOfShape_discrete
Finite.of_fintype
PreservesPullbacksOfInclusions.instOfPreservesLimitsOfShapeWalkingCospan
Limits.reflectsLimitsOfShape_of_reflectsIsomorphisms
Limits.reflectsColimitsOfShape_of_reflectsIsomorphisms
finitaryExtensive_of_reflective πŸ“–mathematicalLimits.HasPullback
Functor.obj
Functor.id
Functor.map
NatTrans.app
Functor.comp
Adjunction.unit
Limits.PreservesLimit
Limits.WalkingCospan
Limits.WidePullbackShape.category
Limits.WalkingPair
Limits.cospan
FinitaryExtensiveβ€”Limits.hasColimitsOfShape_discrete
Finite.of_fintype
FinitaryExtensive.hasFiniteCoproducts
Adjunction.leftAdjoint_preservesColimits
Adjunction.counit_isIso_of_R_fully_faithful
IsVanKampenColimit.precompose_isIso_iff
Iso.isIso_hom
Limits.hasColimitOfHasColimitsOfShape
Functor.hext
Discrete.functor_map_id
PreservesPullbacksOfInclusions.preservesPullbackInl'
PreservesPullbacksOfInclusions.preservesPullbackInr'
IsVanKampenColimit.of_iso
IsVanKampenColimit.map_reflective
FinitaryExtensive.vanKampen
Limits.PreservesColimitsOfShape.preservesColimit
Limits.PreservesFiniteColimits.preservesFiniteColimits
Limits.PreservesColimits.preservesFiniteColimits
hasStrictInitialObjects_of_finitaryPreExtensive πŸ“–mathematicalβ€”Limits.HasStrictInitialObjectsβ€”hasStrictInitial_of_isUniversal
Limits.hasColimitsOfShape_discrete
FinitaryPreExtensive.hasFiniteCoproducts
Finite.of_fintype
FinitaryPreExtensive.universal'
Limits.BinaryCofan.isColimit_iff_isIso_inr
IsIso.id
instCoproductsOfShapeDisjointOfFinitaryExtensiveOfFinite πŸ“–mathematicalβ€”Limits.CoproductsOfShapeDisjointβ€”Limits.hasColimitsOfShape_discrete
FinitaryExtensive.hasFiniteCoproducts
Finite.of_fintype
FinitaryExtensive.isPullback_initial_to
IsPullback.of_isLimit
FinitaryExtensive.mono_ΞΉ
instMonoCoprodOfFinitaryExtensive πŸ“–mathematicalβ€”Limits.MonoCoprodβ€”BinaryCofan.mono_inr_of_isVanKampen
Limits.hasColimitsOfShape_discrete
FinitaryExtensive.hasFiniteCoproducts
Finite.of_fintype
FinitaryExtensive.vanKampen
instMonoΞΉ πŸ“–mathematicalβ€”Mono
Limits.sigmaObj
Limits.hasColimitOfHasColimitsOfShape
Discrete
discreteCategory
Limits.hasColimitsOfShape_discrete
FinitaryExtensive.hasFiniteCoproducts
Discrete.functor
Limits.Sigma.ΞΉ
β€”FinitaryExtensive.mono_ΞΉ
Limits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShape_discrete
FinitaryExtensive.hasFiniteCoproducts
instPreservesLimitWalkingCospanCospanOfIsIso πŸ“–mathematicalβ€”Limits.PreservesLimit
Limits.WalkingCospan
Limits.WidePullbackShape.category
Limits.WalkingPair
Limits.cospan
β€”Limits.hasPullback_of_left_iso
Limits.preservesLimit_of_preserves_limit_cone
IsPullback.of_hasPullback
Limits.pullback.condition
IsPullback.of_vert_isIso
Functor.map_isIso
Limits.pullback_snd_iso_of_left_iso
Functor.map_comp
instPreservesLimitWalkingCospanCospanOfIsIso_1 πŸ“–mathematicalβ€”Limits.PreservesLimit
Limits.WalkingCospan
Limits.WidePullbackShape.category
Limits.WalkingPair
Limits.cospan
β€”Limits.preservesPullback_symmetry
instPreservesLimitWalkingCospanCospanOfIsIso

CategoryTheory.FinitaryExtensive

Theorems

NameKindAssumesProvesValidatesDepends On
hasFiniteCoproducts πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteCoproductsβ€”β€”
hasPullbacksOfInclusions πŸ“–mathematicalβ€”CategoryTheory.HasPullbacksOfInclusions
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
β€”β€”
isPullback_initial_to πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.initial.to
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
isVanKampen_finiteCoproducts
isPullback_initial_to_binaryCofan πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.BinaryCofan.inl
CategoryTheory.Limits.BinaryCofan.inr
β€”CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
vanKampen
isPullback_initial_to_sigma_ΞΉ πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Limits.initial
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
Fintype.instPEmpty
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.Sigma.ΞΉ
β€”isPullback_initial_to
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
isVanKampen_finiteCoproducts πŸ“–mathematicalβ€”CategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”Finite.exists_equiv_fin
CategoryTheory.IsVanKampenColimit.whiskerEquivalence_iff
isVanKampen_finiteCoproducts_Fin
isVanKampen_finiteCoproducts_Fin πŸ“–mathematicalβ€”CategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Functor.hext
CategoryTheory.Discrete.functor_map_id
CategoryTheory.isVanKampenColimit_of_isEmpty
CategoryTheory.hasStrictInitialObjects_of_finitaryPreExtensive
toFinitaryPreExtensive
CategoryTheory.instIsEmptyDiscrete
Fin.isEmpty'
CategoryTheory.IsVanKampenColimit.of_iso
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.isVanKampenColimit_extendCofan
van_kampen'
CategoryTheory.HasPullbacksOfInclusions.hasPullbackInr
hasPullbacksOfInclusions
mono_inl_of_isColimit πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inl
β€”mono_inr_of_isColimit
mono_inr_of_isColimit πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.BinaryCofan.inr
β€”CategoryTheory.BinaryCofan.mono_inr_of_isVanKampen
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
vanKampen
mono_ΞΉ πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”CategoryTheory.mono_of_cofan_isVanKampen
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
isVanKampen_finiteCoproducts
toFinitaryPreExtensive πŸ“–mathematicalβ€”CategoryTheory.FinitaryPreExtensiveβ€”hasFiniteCoproducts
hasPullbacksOfInclusions
CategoryTheory.IsVanKampenColimit.isUniversal
van_kampen'
vanKampen πŸ“–mathematicalβ€”CategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
β€”CategoryTheory.Functor.hext
CategoryTheory.Discrete.functor_map_id
van_kampen'
van_kampen' πŸ“–mathematicalβ€”CategoryTheory.IsVanKampenColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
β€”β€”

CategoryTheory.FinitaryPreExtensive

Theorems

NameKindAssumesProvesValidatesDepends On
hasFiniteCoproducts πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteCoproductsβ€”β€”
hasPullbacksOfInclusions πŸ“–mathematicalβ€”CategoryTheory.HasPullbacksOfInclusions
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
β€”β€”
hasPullbacks_of_inclusions πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullbackβ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
hasPullbacks_of_is_coproduct
hasPullbacks_of_is_coproduct πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullback
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
β€”CategoryTheory.Functor.hext
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Subtype.finite
Finite.of_fintype
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.Limits.coprod.desc_comp
Subtype.prop
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv
CategoryTheory.IsPullback.of_horiz_isIso
CategoryTheory.IsIso.id
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.HasPullbacksOfInclusions.preservesPullbackInl'
hasPullbacksOfInclusions
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.IsPullback.of_hasPullback
isIso_sigmaDesc_fst πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.pullback
hasPullbacks_of_inclusions
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.desc
CategoryTheory.Limits.pullback.fst
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
hasPullbacks_of_inclusions
CategoryTheory.Limits.Cofan.nonempty_isColimit_iff_isIso_sigmaDesc
isUniversal_finiteCoproducts
CategoryTheory.IsUniversalColimit.nonempty_isColimit_of_pullbackCone_left
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.id_horiz
CategoryTheory.Limits.pullback.condition
isIso_sigmaDesc_map πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.instProd
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.desc
CategoryTheory.Limits.pullback.map
CategoryTheory.Limits.Sigma.ΞΉ
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.Category.comp_id
CategoryTheory.Limits.colimit.ΞΉ_desc
Finite.instProd
CategoryTheory.Limits.Cofan.nonempty_isColimit_iff_isIso_sigmaDesc
CategoryTheory.IsUniversalColimit.nonempty_isColimit_prod_of_pullbackCone
isUniversal_finiteCoproducts
CategoryTheory.Category.id_comp
CategoryTheory.Limits.limit.lift_Ο€
isPullback_sigmaDesc πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Limits.sigmaObj
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.instProd
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.Sigma.ΞΉ
CategoryTheory.Limits.pullback.snd
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.instProd
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Category.id_comp
CategoryTheory.IsUniversalColimit.isPullback_prod_of_isColimit
isUniversal_finiteCoproducts
CategoryTheory.IsPullback.of_hasPullback
isUniversal_finiteCoproducts πŸ“–mathematicalβ€”CategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”Finite.exists_equiv_fin
CategoryTheory.IsUniversalColimit.whiskerEquivalence_iff
isUniversal_finiteCoproducts_Fin
isUniversal_finiteCoproducts_Fin πŸ“–mathematicalβ€”CategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Functor.hext
CategoryTheory.Discrete.functor_map_id
CategoryTheory.IsVanKampenColimit.isUniversal
CategoryTheory.isVanKampenColimit_of_isEmpty
CategoryTheory.hasStrictInitialObjects_of_finitaryPreExtensive
CategoryTheory.instIsEmptyDiscrete
Fin.isEmpty'
CategoryTheory.IsUniversalColimit.of_iso
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.isUniversalColimit_extendCofan
universal'
CategoryTheory.HasPullbacksOfInclusions.hasPullbackInr
hasPullbacksOfInclusions
universal' πŸ“–mathematicalβ€”CategoryTheory.IsUniversalColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
β€”β€”

CategoryTheory.HasPullbacksOfInclusions

Theorems

NameKindAssumesProvesValidatesDepends On
hasPullbackInl πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inl
β€”β€”
hasPullbackInr πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inr
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasPullback_symmetry
hasPullbackInr'
hasPullbackInr' πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inr
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.IsPullback.of_horiz_isIso
CategoryTheory.IsIso.id
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.coprod.desc_comp
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.coprod.desc_inl_inr
CategoryTheory.Category.comp_id
CategoryTheory.Limits.hasPullbackHorizPaste
preservesPullbackInl'
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.IsPullback.of_hasPullback
instOfHasPullbacks πŸ“–mathematicalβ€”CategoryTheory.HasPullbacksOfInclusionsβ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
preservesPullbackInl' πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullback
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inl
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasPullback_symmetry
hasPullbackInl

CategoryTheory.PreservesPullbacksOfInclusions

Theorems

NameKindAssumesProvesValidatesDepends On
instOfPreservesLimitsOfShapeWalkingCospan πŸ“–mathematicalβ€”CategoryTheory.PreservesPullbacksOfInclusionsβ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
preservesPullbackInl πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inl
β€”β€”
preservesPullbackInl' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inl
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.preservesPullback_symmetry
preservesPullbackInl
preservesPullbackInr πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inr
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.preservesPullback_symmetry
preservesPullbackInr'
preservesPullbackInr' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.inr
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.preservesLimit_of_iso_diagram
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.coprod.desc_comp
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.coprod.desc_inl_inr
CategoryTheory.Category.comp_id
preservesPullbackInl'

CategoryTheory.Presieve

Definitions

NameCategoryTheorems
Extensive πŸ“–CompData
1 mathmath: CategoryTheory.instExtensiveOfArrowsΞΉ

CategoryTheory.types

Theorems

NameKindAssumesProvesValidatesDepends On
finitaryExtensive πŸ“–mathematicalβ€”CategoryTheory.FinitaryExtensive
CategoryTheory.types
β€”CategoryTheory.finitaryExtensive_iff_of_isTerminal
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.HasPullbacksOfInclusions.instOfHasPullbacks
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.Types.instHasPullbacksType
CategoryTheory.CommSq.w
CategoryTheory.Limits.PullbackCone.condition
CategoryTheory.Limits.IsTerminal.hom_ext
CategoryTheory.types_ext

---

← Back to Index