Documentation Verification Report

ExtremalEpi

📁 Source: Mathlib/CategoryTheory/ExtremalEpi.lean

Statistics

MetricCount
DefinitionsExtremalEpi
1
TheoremsisIso, mk_of_hasEqualizers, subobject_eq_top, toEpi, extremalEpi_iff_strongEpi_of_hasPullbacks, instExtremalEpiOfStrongEpi
6
Total7

CategoryTheory

Definitions

NameCategoryTheorems
ExtremalEpi 📖CompData
5 mathmath: instExtremalEpiOfStrongEpi, ObjectProperty.isStrongGenerator_iff_exists_extremalEpi, extremalEpi_iff_strongEpi_of_hasPullbacks, ObjectProperty.IsStrongGenerator.extremalEpi_coproductFrom, ExtremalEpi.mk_of_hasEqualizers

Theorems

NameKindAssumesProvesValidatesDepends On
extremalEpi_iff_strongEpi_of_hasPullbacks 📖mathematicalExtremalEpi
StrongEpi
ExtremalEpi.toEpi
Limits.hasLimitOfHasLimitsOfShape
ExtremalEpi.isIso
CommSq.w
Limits.limit.lift_π
Limits.pullback.snd_of_mono
cancel_mono
Category.assoc
cancel_epi
instExtremalEpiOfStrongEpi
strongEpi_of_isIso
IsIso.hom_inv_id_assoc
Limits.pullback.condition
IsIso.inv_hom_id_assoc
instExtremalEpiOfStrongEpi 📖mathematicalExtremalEpiepi_of_strongEpi
Category.comp_id
sq_hasLift_of_hasLiftingProperty
StrongEpi.llp
cancel_mono
Category.assoc
CommSq.fac_right
Category.id_comp

CategoryTheory.ExtremalEpi

Theorems

NameKindAssumesProvesValidatesDepends On
isIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
mk_of_hasEqualizers 📖mathematicalCategoryTheory.IsIsoCategoryTheory.ExtremalEpiCategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Limits.equalizer.condition
subobject_eq_top 📖mathematicalCategoryTheory.Subobject.FactorsTop.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.orderTop
CategoryTheory.Subobject.isIso_arrow_iff_eq_top
isIso
CategoryTheory.Subobject.factorThru_arrow
CategoryTheory.Subobject.arrow_mono
toEpi 📖mathematicalCategoryTheory.Epi

---

← Back to Index