Documentation Verification Report

BasedCategory

πŸ“ Source: Mathlib/CategoryTheory/FiberedCategory/BasedCategory.lean

Statistics

MetricCount
DefinitionsBasedCategory, bicategory, category, instCategory, obj, ofFunctor, p, whiskerLeft, whiskerRight, BasedFunctor, comp, id, toFunctor, Β«term_β‹™_Β», Β«term𝟭», id, mkNatIso, BasedNatTrans, comp, forgetful, homCategory, id, toNatTrans, instCategoryObj, Β«term_β₯€α΅‡_Β»
25
Theoremscomp_def, id_def, instStrict, whiskerLeft_toNatTrans, whiskerRight_toNatTrans, comp_assoc, comp_id, comp_toFunctor, id_comp, id_toFunctor, instIsHomLiftObjPIdObj, isHomLift_iff, isHomLift_map, preserves_isHomLift, w, w_obj, id_hom, id_inv, isIso_of_toNatTrans_isIso, app_isHomLift, comp_toNatTrans, ext, ext_iff, forgetful_map, forgetful_obj, ext, ext_iff, homCategory_comp, homCategory_id, id_toNatTrans, instIsIsoFunctorObjOfBasedFunctor, instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, isHomLift, isHomLift'
34
Total59

CategoryTheory

Definitions

NameCategoryTheorems
BasedCategory πŸ“–CompData
3 mathmath: BasedCategory.comp_def, BasedCategory.instStrict, BasedCategory.id_def
BasedFunctor πŸ“–CompData
8 mathmath: BasedNatIso.id_hom, BasedNatIso.isIso_of_toNatTrans_isIso, BasedNatTrans.forgetful_map, BasedNatIso.id_inv, BasedNatTrans.homCategory_comp, BasedNatTrans.instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, BasedNatTrans.homCategory_id, BasedNatTrans.forgetful_obj
BasedNatTrans πŸ“–CompDataβ€”
instCategoryObj πŸ“–CompOp
18 mathmath: BasedNatTrans.id_toNatTrans, BasedNatTrans.isHomLift', BasedCategory.whiskerLeft_toNatTrans, BasedCategory.whiskerRight_toNatTrans, BasedFunctor.w_obj, BasedNatTrans.forgetful_map, BasedNatTrans.comp_toNatTrans, BasedFunctor.id_toFunctor, BasedFunctor.w, BasedFunctor.instIsHomLiftObjPIdObj, BasedFunctor.isHomLift_iff, BasedFunctor.preserves_isHomLift, BasedNatTrans.instIsIsoFunctorObjOfBasedFunctor, BasedNatTrans.instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, BasedFunctor.comp_toFunctor, BasedNatTrans.app_isHomLift, BasedNatTrans.isHomLift, BasedNatTrans.forgetful_obj
Β«term_β₯€α΅‡_Β» πŸ“–CompOpβ€”

CategoryTheory.BasedCategory

Definitions

NameCategoryTheorems
bicategory πŸ“–CompOp
1 mathmath: instStrict
category πŸ“–CompOp
7 mathmath: CategoryTheory.BasedNatTrans.isHomLift', CategoryTheory.BasedFunctor.isHomLift_map, CategoryTheory.BasedFunctor.w_obj, CategoryTheory.BasedFunctor.instIsHomLiftObjPIdObj, CategoryTheory.BasedFunctor.isHomLift_iff, CategoryTheory.BasedFunctor.preserves_isHomLift, CategoryTheory.BasedNatTrans.app_isHomLift
instCategory πŸ“–CompOp
2 mathmath: comp_def, id_def
obj πŸ“–CompOp
18 mathmath: CategoryTheory.BasedNatTrans.id_toNatTrans, CategoryTheory.BasedNatTrans.isHomLift', whiskerLeft_toNatTrans, whiskerRight_toNatTrans, CategoryTheory.BasedFunctor.isHomLift_map, CategoryTheory.BasedFunctor.w_obj, CategoryTheory.BasedNatTrans.forgetful_map, CategoryTheory.BasedNatTrans.comp_toNatTrans, CategoryTheory.BasedFunctor.id_toFunctor, CategoryTheory.BasedFunctor.w, CategoryTheory.BasedFunctor.instIsHomLiftObjPIdObj, CategoryTheory.BasedFunctor.isHomLift_iff, CategoryTheory.BasedFunctor.preserves_isHomLift, CategoryTheory.BasedNatTrans.instIsIsoFunctorObjOfBasedFunctor, CategoryTheory.BasedNatTrans.instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, CategoryTheory.BasedFunctor.comp_toFunctor, CategoryTheory.BasedNatTrans.app_isHomLift, CategoryTheory.BasedNatTrans.forgetful_obj
ofFunctor πŸ“–CompOpβ€”
p πŸ“–CompOp
8 mathmath: CategoryTheory.BasedNatTrans.isHomLift', CategoryTheory.BasedFunctor.isHomLift_map, CategoryTheory.BasedFunctor.w_obj, CategoryTheory.BasedFunctor.w, CategoryTheory.BasedFunctor.instIsHomLiftObjPIdObj, CategoryTheory.BasedFunctor.isHomLift_iff, CategoryTheory.BasedFunctor.preserves_isHomLift, CategoryTheory.BasedNatTrans.app_isHomLift
whiskerLeft πŸ“–CompOp
1 mathmath: whiskerLeft_toNatTrans
whiskerRight πŸ“–CompOp
1 mathmath: whiskerRight_toNatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
comp_def πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.BasedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.BasedFunctor.comp
β€”β€”
id_def πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.id
CategoryTheory.BasedCategory
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.BasedFunctor.id
β€”β€”
instStrict πŸ“–mathematicalβ€”CategoryTheory.Bicategory.Strict
CategoryTheory.BasedCategory
bicategory
β€”β€”
whiskerLeft_toNatTrans πŸ“–mathematicalβ€”CategoryTheory.BasedNatTrans.toNatTrans
CategoryTheory.BasedFunctor.comp
whiskerLeft
CategoryTheory.Functor.whiskerLeft
obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
β€”β€”
whiskerRight_toNatTrans πŸ“–mathematicalβ€”CategoryTheory.BasedNatTrans.toNatTrans
CategoryTheory.BasedFunctor.comp
whiskerRight
CategoryTheory.Functor.whiskerRight
obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
β€”β€”

CategoryTheory.BasedFunctor

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
7 mathmath: CategoryTheory.BasedCategory.comp_def, CategoryTheory.BasedCategory.whiskerLeft_toNatTrans, comp_id, CategoryTheory.BasedCategory.whiskerRight_toNatTrans, comp_assoc, id_comp, comp_toFunctor
id πŸ“–CompOp
4 mathmath: comp_id, id_comp, id_toFunctor, CategoryTheory.BasedCategory.id_def
toFunctor πŸ“–CompOp
16 mathmath: CategoryTheory.BasedNatTrans.id_toNatTrans, CategoryTheory.BasedNatTrans.isHomLift', CategoryTheory.BasedCategory.whiskerLeft_toNatTrans, CategoryTheory.BasedCategory.whiskerRight_toNatTrans, w_obj, CategoryTheory.BasedNatTrans.comp_toNatTrans, id_toFunctor, w, instIsHomLiftObjPIdObj, isHomLift_iff, preserves_isHomLift, CategoryTheory.BasedNatTrans.instIsIsoFunctorObjOfBasedFunctor, comp_toFunctor, CategoryTheory.BasedNatTrans.app_isHomLift, CategoryTheory.BasedNatTrans.isHomLift, CategoryTheory.BasedNatTrans.forgetful_obj
Β«term_β‹™_Β» πŸ“–CompOpβ€”
Β«term𝟭» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
comp_toFunctor πŸ“–mathematicalβ€”toFunctor
comp
CategoryTheory.Functor.comp
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
id_toFunctor πŸ“–mathematicalβ€”toFunctor
id
CategoryTheory.Functor.id
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
β€”β€”
instIsHomLiftObjPIdObj πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.obj
CategoryTheory.instCategoryObj
toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.IsHomLift.id
w_obj
isHomLift_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.obj
CategoryTheory.instCategoryObj
toFunctor
CategoryTheory.Functor.map
β€”isHomLift_map
preserves_isHomLift
isHomLift_map πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
β€”CategoryTheory.IsHomLift.of_fac
CategoryTheory.IsHomLift.domain_eq
w_obj
CategoryTheory.IsHomLift.codomain_eq
CategoryTheory.Functor.congr_obj
w
CategoryTheory.IsHomLift.fac
CategoryTheory.Functor.congr_hom
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_trans_assoc
preserves_isHomLift πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.obj
CategoryTheory.instCategoryObj
toFunctor
CategoryTheory.Functor.map
β€”CategoryTheory.IsHomLift.of_fac
w_obj
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.IsHomLift.codomain_eq
CategoryTheory.Functor.comp_map
CategoryTheory.Functor.congr_obj
w
CategoryTheory.Functor.congr_hom
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.IsHomLift.fac
w πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
toFunctor
CategoryTheory.BasedCategory.p
β€”β€”
w_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.instCategoryObj
toFunctor
β€”CategoryTheory.Functor.comp_obj
w

CategoryTheory.BasedNatIso

Definitions

NameCategoryTheorems
id πŸ“–CompOp
2 mathmath: id_hom, id_inv
mkNatIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
id_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.BasedFunctor
CategoryTheory.BasedNatTrans.homCategory
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
id_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.BasedFunctor
CategoryTheory.BasedNatTrans.homCategory
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
isIso_of_toNatTrans_isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.BasedFunctor
CategoryTheory.BasedNatTrans.homCategory
β€”CategoryTheory.Functor.ReflectsIsomorphisms.reflects
CategoryTheory.BasedNatTrans.instReflectsIsomorphismsBasedFunctorFunctorObjForgetful

CategoryTheory.BasedNatTrans

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
2 mathmath: comp_toNatTrans, homCategory_comp
forgetful πŸ“–CompOp
3 mathmath: forgetful_map, instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, forgetful_obj
homCategory πŸ“–CompOp
8 mathmath: CategoryTheory.BasedNatIso.id_hom, CategoryTheory.BasedNatIso.isIso_of_toNatTrans_isIso, forgetful_map, CategoryTheory.BasedNatIso.id_inv, homCategory_comp, instReflectsIsomorphismsBasedFunctorFunctorObjForgetful, homCategory_id, forgetful_obj
id πŸ“–CompOp
2 mathmath: id_toNatTrans, homCategory_id
toNatTrans πŸ“–CompOp
11 mathmath: id_toNatTrans, isHomLift', CategoryTheory.BasedCategory.whiskerLeft_toNatTrans, CategoryTheory.BasedCategory.whiskerRight_toNatTrans, homCategory.ext_iff, forgetful_map, comp_toNatTrans, instIsIsoFunctorObjOfBasedFunctor, ext_iff, app_isHomLift, isHomLift

Theorems

NameKindAssumesProvesValidatesDepends On
app_isHomLift πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
toNatTrans
β€”isHomLift'
comp_toNatTrans πŸ“–mathematicalβ€”toNatTrans
comp
CategoryTheory.NatTrans.vcomp
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
β€”β€”
ext πŸ“–β€”toNatTransβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toNatTransβ€”ext
forgetful_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.BasedFunctor
homCategory
CategoryTheory.Functor
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.Functor.category
forgetful
toNatTrans
β€”β€”
forgetful_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.BasedFunctor
homCategory
CategoryTheory.Functor
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.Functor.category
forgetful
CategoryTheory.BasedFunctor.toFunctor
β€”β€”
homCategory_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.BasedFunctor
CategoryTheory.Category.toCategoryStruct
homCategory
comp
β€”β€”
homCategory_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.id
CategoryTheory.BasedFunctor
CategoryTheory.Category.toCategoryStruct
homCategory
id
β€”β€”
id_toNatTrans πŸ“–mathematicalβ€”toNatTrans
id
CategoryTheory.NatTrans.id
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
β€”β€”
instIsIsoFunctorObjOfBasedFunctor πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.Functor.category
CategoryTheory.BasedFunctor.toFunctor
toNatTrans
β€”forgetful_map
CategoryTheory.Functor.map_isIso
instReflectsIsomorphismsBasedFunctorFunctorObjForgetful πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.BasedFunctor
homCategory
CategoryTheory.Functor
CategoryTheory.BasedCategory.obj
CategoryTheory.instCategoryObj
CategoryTheory.Functor.category
forgetful
β€”CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
app_isHomLift
homCategory.ext
CategoryTheory.NatTrans.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
isHomLift πŸ“–mathematicalCategoryTheory.Functor.obj
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.IsHomLift
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
toNatTrans
β€”app_isHomLift
isHomLift' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsHomLift
CategoryTheory.BasedCategory.obj
CategoryTheory.BasedCategory.category
CategoryTheory.BasedCategory.p
CategoryTheory.Functor.obj
CategoryTheory.instCategoryObj
CategoryTheory.BasedFunctor.toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
toNatTrans
β€”β€”

CategoryTheory.BasedNatTrans.homCategory

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”CategoryTheory.BasedNatTrans.toNatTransβ€”β€”CategoryTheory.BasedNatTrans.ext
ext_iff πŸ“–mathematicalβ€”CategoryTheory.BasedNatTrans.toNatTransβ€”ext

---

← Back to Index