Documentation Verification Report

Cartesian

📁 Source: Mathlib/CategoryTheory/FiberedCategory/Cartesian.lean

Statistics

MetricCount
DefinitionsIsCartesian, domainUniqueUpToIso, map, IsStronglyCartesian, domainIsoOfBaseIso, map
6
TheoremsdomainUniqueUpToIso_hom, domainUniqueUpToIso_hom_isHomLift, domainUniqueUpToIso_inv, domainUniqueUpToIso_inv_isHomLift, ext, fac, fac_assoc, map_isHomLift, map_self, map_uniq, of_comp_iso, of_iso_comp, toIsHomLift, universal_property, comp, domainIsoOfBaseIso_hom, domainIsoOfBaseIso_inv, domainUniqueUpToIso_hom_isHomLift, domainUniqueUpToIso_inv_isHomLift, ext, fac, fac_assoc, isCartesian_of_isStronglyCartesian, isIso_of_base_isIso, map_comp_map, map_comp_map_assoc, map_isHomLift, map_self, map_uniq, of_comp, of_isIso, of_iso, toIsHomLift, universal_property, universal_property'
35
Total41

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsCartesian 📖CompData
9 mathmath: IsPreFibered.exists_isCartesian', IsFibered.comp, IsStronglyCartesian.isCartesian_of_isStronglyCartesian, IsCartesian.of_iso_comp, CategoryTheory.instIsCartesianCompOfIsFibered, IsCartesian.of_comp_iso, HasFibers.pullbackMap.isCartesian, IsPreFibered.pullbackMap.IsCartesian, CategoryTheory.IsPreFibered.exists_isCartesian
IsStronglyCartesian 📖CompData
7 mathmath: IsStronglyCartesian.of_comp, IsStronglyCartesian.of_isIso, IsFibered.isStronglyCartesian_of_isCartesian, IsStronglyCartesian.comp, IsStronglyCartesian.of_iso, CategoryTheory.Pseudofunctor.CoGrothendieck.isStronglyCartesian_homCartesianLift, HasFibers.fiber_factorization

CategoryTheory.Functor.IsCartesian

Definitions

NameCategoryTheorems
domainUniqueUpToIso 📖CompOp
4 mathmath: domainUniqueUpToIso_inv_isHomLift, domainUniqueUpToIso_inv, domainUniqueUpToIso_hom, domainUniqueUpToIso_hom_isHomLift
map 📖CompOp
7 mathmath: map_self, fac_assoc, domainUniqueUpToIso_inv, domainUniqueUpToIso_hom, map_uniq, fac, map_isHomLift

Theorems

NameKindAssumesProvesValidatesDepends On
domainUniqueUpToIso_hom 📖mathematicalCategoryTheory.Iso.hom
domainUniqueUpToIso
map
toIsHomLift
domainUniqueUpToIso_hom_isHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
domainUniqueUpToIso
toIsHomLift
map_isHomLift
domainUniqueUpToIso_inv
domainUniqueUpToIso_inv 📖mathematicalCategoryTheory.Iso.inv
domainUniqueUpToIso
map
toIsHomLift
domainUniqueUpToIso_inv_isHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
domainUniqueUpToIso
toIsHomLift
map_isHomLift
domainUniqueUpToIso_hom
ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp_lift_id_left
toIsHomLift
map_uniq
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
universal_property
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
map_isHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
map
universal_property
map_self 📖mathematicalmap
toIsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toIsHomLift
map_uniq
CategoryTheory.IsHomLift.instIsHomLiftIdObj
CategoryTheory.Category.id_comp
map_uniq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
of_comp_iso 📖mathematicalCategoryTheory.Functor.IsCartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.IsHomLift.comp_lift_id_right
toIsHomLift
CategoryTheory.IsHomLift.lift_id_inv
map_isHomLift
fac_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
map_uniq
CategoryTheory.Iso.eq_comp_inv
of_iso_comp 📖mathematicalCategoryTheory.Functor.IsCartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.IsHomLift.comp_lift_id_left
toIsHomLift
CategoryTheory.IsHomLift.comp_of_lift_id
map_isHomLift
CategoryTheory.IsHomLift.lift_id_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
fac
CategoryTheory.Iso.eq_comp_inv
map_uniq
toIsHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
universal_property 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.comp

CategoryTheory.Functor.IsStronglyCartesian

Definitions

NameCategoryTheorems
domainIsoOfBaseIso 📖CompOp
4 mathmath: domainUniqueUpToIso_hom_isHomLift, domainIsoOfBaseIso_hom, domainIsoOfBaseIso_inv, domainUniqueUpToIso_inv_isHomLift
map 📖CompOp
9 mathmath: domainIsoOfBaseIso_hom, map_self, domainIsoOfBaseIso_inv, map_uniq, map_comp_map_assoc, fac, fac_assoc, map_isHomLift, map_comp_map

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.Functor.IsStronglyCartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp
toIsHomLift
CategoryTheory.Category.assoc
map_isHomLift
fac
map_uniq
domainIsoOfBaseIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
domainIsoOfBaseIso
map
toIsHomLift
domainIsoOfBaseIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
domainIsoOfBaseIso
map
domainUniqueUpToIso_hom_isHomLift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor.IsHomLift
CategoryTheory.Iso.inv
domainIsoOfBaseIso
CategoryTheory.Iso.inv_hom_id_assoc
map.congr_simp
CategoryTheory.Functor.IsCartesian.toIsHomLift
isCartesian_of_isStronglyCartesian
map_isHomLift
domainUniqueUpToIso_inv_isHomLift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor.IsHomLift
domainIsoOfBaseIso
toIsHomLift
map_isHomLift
domainIsoOfBaseIso_hom
ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp
toIsHomLift
map_uniq
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapCategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
isCartesian_of_isStronglyCartesian 📖mathematicalCategoryTheory.Functor.IsCartesiantoIsHomLift
universal_property
CategoryTheory.Category.id_comp
isIso_of_base_isIso 📖mathematicalCategoryTheory.IsIsotoIsHomLift
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.IsHomLift.instIsHomLiftIdObj
fac
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsHomLift.comp
CategoryTheory.IsHomLift.map
map_isHomLift
ext
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_comp_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
toIsHomLift
map_uniq
toIsHomLift
CategoryTheory.IsHomLift.comp
map_isHomLift
CategoryTheory.Category.assoc
fac
map_comp_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
toIsHomLift
toIsHomLift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp_map
map_isHomLift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
map
universal_property
map_self 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.id_comp
toIsHomLift
toIsHomLift
CategoryTheory.Category.id_comp
map_uniq
CategoryTheory.IsHomLift.instIsHomLiftIdObj
map_uniq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
of_comp 📖mathematicalCategoryTheory.Functor.IsStronglyCartesianCategoryTheory.Category.assoc
CategoryTheory.IsHomLift.comp
toIsHomLift
map_isHomLift
ext
fac
map_uniq
of_isIso 📖mathematicalCategoryTheory.Functor.IsStronglyCartesianof_iso
of_iso 📖mathematicalCategoryTheory.Functor.IsStronglyCartesian
CategoryTheory.Iso.hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.IsHomLift.isoOfIsoLift_hom_inv_id
CategoryTheory.IsHomLift.comp
CategoryTheory.IsHomLift.inv_lift
CategoryTheory.Iso.hom_inv_id
toIsHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
universal_property 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.IsHomLift
universal_property'
universal_property' 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp

---

← Back to Index