Documentation Verification Report

Cocartesian

📁 Source: Mathlib/CategoryTheory/FiberedCategory/Cocartesian.lean

Statistics

MetricCount
DefinitionsIsCocartesian, codomainUniqueUpToIso, map, IsStronglyCocartesian, codomainIsoOfBaseIso, map
6
Theoremsext, fac, fac_assoc, map_isHomLift, map_self, map_uniq, of_comp_iso, of_iso_comp, toIsHomLift, universal_property, comp, ext, fac, fac_assoc, isCocartesian_of_isStronglyCocartesian, isIso_of_base_isIso, map_comp_map, map_comp_map_assoc, map_isHomLift, map_self, map_uniq, of_comp, of_isIso, of_iso, toIsHomLift, universal_property, universal_property'
27
Total33

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsCocartesian 📖CompData
3 mathmath: IsCocartesian.of_iso_comp, IsStronglyCocartesian.isCocartesian_of_isStronglyCocartesian, IsCocartesian.of_comp_iso
IsStronglyCocartesian 📖CompData
4 mathmath: IsStronglyCocartesian.of_comp, IsStronglyCocartesian.comp, IsStronglyCocartesian.of_isIso, IsStronglyCocartesian.of_iso

CategoryTheory.Functor.IsCocartesian

Definitions

NameCategoryTheorems
codomainUniqueUpToIso 📖CompOp
map 📖CompOp
5 mathmath: map_isHomLift, fac_assoc, map_self, fac, map_uniq

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp_lift_id_right
toIsHomLift
map_uniq
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
universal_property
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
map_isHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
map
universal_property
map_self 📖mathematicalmap
toIsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
toIsHomLift
map_uniq
CategoryTheory.IsHomLift.instIsHomLiftIdObj
CategoryTheory.Category.comp_id
map_uniq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
of_comp_iso 📖mathematicalCategoryTheory.Functor.IsCocartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.IsHomLift.comp_lift_id_right
toIsHomLift
CategoryTheory.IsHomLift.comp_of_lift_id
CategoryTheory.IsHomLift.lift_id_inv
map_isHomLift
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
fac
CategoryTheory.Iso.eq_inv_comp
map_uniq
of_iso_comp 📖mathematicalCategoryTheory.Functor.IsCocartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.IsHomLift.comp_lift_id_left
toIsHomLift
CategoryTheory.IsHomLift.lift_id_inv
map_isHomLift
CategoryTheory.Category.assoc
fac
CategoryTheory.Iso.hom_inv_id_assoc
map_uniq
toIsHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
universal_property 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.comp

CategoryTheory.Functor.IsStronglyCocartesian

Definitions

NameCategoryTheorems
codomainIsoOfBaseIso 📖CompOp
map 📖CompOp
7 mathmath: map_comp_map_assoc, fac_assoc, map_comp_map, fac, map_isHomLift, map_uniq, map_self

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.Functor.IsStronglyCocartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp
toIsHomLift
CategoryTheory.Category.assoc
map_isHomLift
map.congr_simp
fac
map_uniq
ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.comp
toIsHomLift
map_uniq
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapCategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
isCocartesian_of_isStronglyCocartesian 📖mathematicalCategoryTheory.Functor.IsCocartesiantoIsHomLift
universal_property
CategoryTheory.Category.comp_id
isIso_of_base_isIso 📖mathematicalCategoryTheory.IsIsotoIsHomLift
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsHomLift.instIsHomLiftIdObj
fac
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.IsHomLift.comp
map_isHomLift
CategoryTheory.IsHomLift.map
ext
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_comp_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
toIsHomLift
map_uniq
toIsHomLift
CategoryTheory.IsHomLift.comp
map_isHomLift
fac_assoc
fac
map_comp_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
toIsHomLift
toIsHomLift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp_map
map_isHomLift 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
map
universal_property
map_self 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.comp_id
toIsHomLift
toIsHomLift
CategoryTheory.Category.comp_id
map_uniq
CategoryTheory.IsHomLift.instIsHomLiftIdObj
map_uniq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapuniversal_property
of_comp 📖mathematicalCategoryTheory.Functor.IsStronglyCocartesianCategoryTheory.Category.assoc
CategoryTheory.IsHomLift.comp
toIsHomLift
map_isHomLift
ext
map.congr_simp
fac
map_uniq
of_isIso 📖mathematicalCategoryTheory.Functor.IsStronglyCocartesianof_iso
of_iso 📖mathematicalCategoryTheory.Functor.IsStronglyCocartesian
CategoryTheory.Iso.hom
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
CategoryTheory.IsHomLift.isoOfIsoLift_inv_hom_id
CategoryTheory.IsHomLift.comp
CategoryTheory.IsHomLift.inv_lift
CategoryTheory.Iso.inv_hom_id_assoc
toIsHomLift 📖mathematicalCategoryTheory.Functor.IsHomLift
universal_property 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.IsHomLift
universal_property'
universal_property' 📖mathematicalExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp

---

← Back to Index