Documentation Verification Report

Fiber

📁 Source: Mathlib/CategoryTheory/FiberedCategory/Fiber.lean

Statistics

MetricCount
DefinitionsFiber, fiberCategory, fiberInclusion, fiberInclusionCompIsoConst, homMk, inducedFunctor, inducedFunctorCompIsoSelf, mk
8
TheoremsfiberInclusionCompIsoConst_hom_app, fiberInclusionCompIsoConst_inv_app, fiberInclusion_comp_eq_const, fiberInclusion_homMk, fiberInclusion_mk, fiberInclusion_obj_inj, homMk_comp, homMk_id, hom_ext, hom_ext_iff, inducedFunctorCompIsoSelf_hom_app, inducedFunctorCompIsoSelf_inv_app, inducedFunctor_comp, inducedFunctor_comp_map, inducedFunctor_comp_obj, instFaithfulFiberInclusion, instIsHomLiftIdMapFiberInclusion
17
Total25

CategoryTheory.Functor

Definitions

NameCategoryTheorems
Fiber 📖CompOp
25 mathmath: Fiber.fiberInclusionCompIsoConst_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Fiber.fiberInclusion_comp_eq_const, Fiber.inducedFunctor_comp_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HasFibers.inducedFunctor_obj_coe, HasFibers.inducedFunctor_comp, Fiber.fiberInclusion_mk, Fiber.fiberInclusion_homMk, Fiber.instIsHomLiftIdMapFiberInclusion, HasFibers.equiv, Fiber.inducedFunctorCompIsoSelf_hom_app, Fiber.homMk_comp, Fiber.hom_ext_iff, Fiber.fiberInclusion_obj_inj, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HasFibers.instIsEquivalenceFibFiberInducedFunctor, Fiber.inducedFunctor_comp_map, Fiber.inducedFunctor_comp, Fiber.homMk_id, Fiber.inducedFunctorCompIsoSelf_inv_app, HasFibers.inducedFunctor_map_coe, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Fiber.fiberInclusionCompIsoConst_hom_app, Fiber.instFaithfulFiberInclusion

CategoryTheory.Functor.Fiber

Definitions

NameCategoryTheorems
fiberCategory 📖CompOp
25 mathmath: fiberInclusionCompIsoConst_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, fiberInclusion_comp_eq_const, inducedFunctor_comp_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HasFibers.inducedFunctor_obj_coe, HasFibers.inducedFunctor_comp, fiberInclusion_mk, fiberInclusion_homMk, instIsHomLiftIdMapFiberInclusion, HasFibers.equiv, inducedFunctorCompIsoSelf_hom_app, homMk_comp, hom_ext_iff, fiberInclusion_obj_inj, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HasFibers.instIsEquivalenceFibFiberInducedFunctor, inducedFunctor_comp_map, inducedFunctor_comp, homMk_id, inducedFunctorCompIsoSelf_inv_app, HasFibers.inducedFunctor_map_coe, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, fiberInclusionCompIsoConst_hom_app, instFaithfulFiberInclusion
fiberInclusion 📖CompOp
15 mathmath: fiberInclusionCompIsoConst_inv_app, fiberInclusion_comp_eq_const, inducedFunctor_comp_obj, HasFibers.inducedFunctor_comp, fiberInclusion_mk, fiberInclusion_homMk, instIsHomLiftIdMapFiberInclusion, inducedFunctorCompIsoSelf_hom_app, hom_ext_iff, fiberInclusion_obj_inj, inducedFunctor_comp_map, inducedFunctor_comp, inducedFunctorCompIsoSelf_inv_app, fiberInclusionCompIsoConst_hom_app, instFaithfulFiberInclusion
fiberInclusionCompIsoConst 📖CompOp
2 mathmath: fiberInclusionCompIsoConst_inv_app, fiberInclusionCompIsoConst_hom_app
homMk 📖CompOp
3 mathmath: fiberInclusion_homMk, homMk_comp, homMk_id
inducedFunctor 📖CompOp
10 mathmath: CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, inducedFunctor_comp_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HasFibers.equiv, inducedFunctorCompIsoSelf_hom_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, inducedFunctor_comp_map, inducedFunctor_comp, inducedFunctorCompIsoSelf_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
inducedFunctorCompIsoSelf 📖CompOp
2 mathmath: inducedFunctorCompIsoSelf_hom_app, inducedFunctorCompIsoSelf_inv_app
mk 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
fiberInclusionCompIsoConst_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.Fiber
fiberCategory
CategoryTheory.Functor.comp
fiberInclusion
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
fiberInclusionCompIsoConst
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
——
fiberInclusionCompIsoConst_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.Fiber
fiberCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
fiberInclusion
CategoryTheory.Iso.inv
fiberInclusionCompIsoConst
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
——
fiberInclusion_comp_eq_const 📖mathematical—CategoryTheory.Functor.comp
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
—CategoryTheory.Functor.ext_of_iso
fiberInclusion_homMk 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsHomLift.codomain_eq
homMk
—CategoryTheory.IsHomLift.domain_eq
CategoryTheory.IsHomLift.codomain_eq
fiberInclusion_mk 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
——
fiberInclusion_obj_inj 📖mathematical—CategoryTheory.Functor.Fiber
CategoryTheory.Functor.obj
fiberCategory
fiberInclusion
——
homMk_comp 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.Fiber
CategoryTheory.Category.toCategoryStruct
fiberCategory
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.CategoryStruct.id
CategoryTheory.IsHomLift.codomain_eq
homMk
CategoryTheory.IsHomLift.comp_of_lift_id
—CategoryTheory.IsHomLift.domain_eq
CategoryTheory.IsHomLift.codomain_eq
homMk_id 📖mathematical—homMk
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.Fiber
fiberCategory
CategoryTheory.IsHomLift.domain_eq
—CategoryTheory.IsHomLift.domain_eq
CategoryTheory.IsHomLift.codomain_eq
hom_ext 📖—CategoryTheory.Functor.map
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
———
hom_ext_iff 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
—hom_ext
inducedFunctorCompIsoSelf_hom_app 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Functor.Fiber
fiberCategory
inducedFunctor
fiberInclusion
CategoryTheory.Iso.hom
inducedFunctorCompIsoSelf
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
inducedFunctorCompIsoSelf_inv_app 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Functor.Fiber
fiberCategory
inducedFunctor
fiberInclusion
CategoryTheory.Iso.inv
inducedFunctorCompIsoSelf
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
inducedFunctor_comp 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.Fiber
fiberCategory
inducedFunctor
fiberInclusion
——
inducedFunctor_comp_map 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
inducedFunctor
——
inducedFunctor_comp_obj 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
inducedFunctor
——
instFaithfulFiberInclusion 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
—hom_ext
instIsHomLiftIdMapFiberInclusion 📖mathematical—CategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
CategoryTheory.Functor.Fiber
fiberCategory
fiberInclusion
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
——

---

← Back to Index