ð Source: Mathlib/CategoryTheory/FiberedCategory/Fiber.lean
Fiber
fiberCategory
fiberInclusion
fiberInclusionCompIsoConst
homMk
inducedFunctor
inducedFunctorCompIsoSelf
mk
fiberInclusionCompIsoConst_hom_app
fiberInclusionCompIsoConst_inv_app
fiberInclusion_comp_eq_const
fiberInclusion_homMk
fiberInclusion_mk
fiberInclusion_obj_inj
homMk_comp
homMk_id
hom_ext
hom_ext_iff
inducedFunctorCompIsoSelf_hom_app
inducedFunctorCompIsoSelf_inv_app
inducedFunctor_comp
inducedFunctor_comp_map
inducedFunctor_comp_obj
instFaithfulFiberInclusion
instIsHomLiftIdMapFiberInclusion
Fiber.fiberInclusionCompIsoConst_inv_app
CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
Fiber.fiberInclusion_comp_eq_const
Fiber.inducedFunctor_comp_obj
CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
HasFibers.inducedFunctor_obj_coe
HasFibers.inducedFunctor_comp
Fiber.fiberInclusion_mk
Fiber.fiberInclusion_homMk
Fiber.instIsHomLiftIdMapFiberInclusion
HasFibers.equiv
Fiber.inducedFunctorCompIsoSelf_hom_app
Fiber.homMk_comp
Fiber.hom_ext_iff
Fiber.fiberInclusion_obj_inj
CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
HasFibers.instIsEquivalenceFibFiberInducedFunctor
Fiber.inducedFunctor_comp_map
Fiber.inducedFunctor_comp
Fiber.homMk_id
Fiber.inducedFunctorCompIsoSelf_inv_app
HasFibers.inducedFunctor_map_coe
CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
Fiber.fiberInclusionCompIsoConst_hom_app
Fiber.instFaithfulFiberInclusion
CategoryTheory.NatTrans.app
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.ext_of_iso
CategoryTheory.Functor.map
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.CategoryStruct.id
CategoryTheory.IsHomLift.codomain_eq
CategoryTheory.CategoryStruct.comp
CategoryTheory.IsHomLift.comp_of_lift_id
CategoryTheory.Functor.Faithful
CategoryTheory.Functor.IsHomLift
---
â Back to Index