Documentation Verification Report

Fibered

📁 Source: Mathlib/CategoryTheory/FiberedCategory/Fibered.lean

Statistics

MetricCount
DefinitionsIsFibered, pullbackPullbackIso, IsPreFibered, pullbackMap, pullbackObj
5
Theoremscomp, isStronglyCartesian_of_exists_isCartesian, isStronglyCartesian_of_isCartesian, of_exists_isStronglyCartesian, toIsPreFibered, exists_isCartesian', IsCartesian, pullbackObj_proj, exists_isCartesian, instIsCartesianCompOfIsFibered
10
Total15

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCartesianCompOfIsFibered 📖mathematicalFunctor.IsCartesian
CategoryStruct.comp
Category.toCategoryStruct
Functor.IsFibered.comp

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsFibered 📖CompData
2 mathmath: CategoryTheory.Pseudofunctor.CoGrothendieck.instIsFiberedForget, IsFibered.of_exists_isStronglyCartesian
IsPreFibered 📖CompData
1 mathmath: IsFibered.toIsPreFibered

CategoryTheory.Functor.IsFibered

Definitions

NameCategoryTheorems
pullbackPullbackIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.Functor.IsCartesian
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
isStronglyCartesian_of_exists_isCartesian 📖CategoryTheory.Functor.IsStronglyCartesian
CategoryTheory.Functor.obj
CategoryTheory.Functor.IsCartesian.toIsHomLift
CategoryTheory.Functor.IsStronglyCartesian.isCartesian_of_isStronglyCartesian
CategoryTheory.IsHomLift.comp_lift_id_right
CategoryTheory.Functor.IsStronglyCartesian.map_isHomLift
CategoryTheory.Functor.IsCartesian.domainUniqueUpToIso_inv_isHomLift
CategoryTheory.Category.assoc
CategoryTheory.Functor.IsCartesian.fac
CategoryTheory.Functor.IsStronglyCartesian.fac
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Functor.IsStronglyCartesian.map_uniq
CategoryTheory.Functor.IsCartesian.domainUniqueUpToIso_hom_isHomLift
isStronglyCartesian_of_isCartesian 📖mathematicalCategoryTheory.Functor.IsStronglyCartesianCategoryTheory.Functor.IsCartesian.toIsHomLift
toIsPreFibered
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.instIsCartesianCompOfIsFibered
CategoryTheory.Functor.IsPreFibered.pullbackMap.IsCartesian
CategoryTheory.IsHomLift.comp_lift_id_left
CategoryTheory.Functor.IsCartesian.map_isHomLift
CategoryTheory.Category.assoc
CategoryTheory.Functor.IsCartesian.fac
CategoryTheory.Functor.IsCartesian.map_uniq
of_exists_isStronglyCartesian 📖mathematicalCategoryTheory.Functor.IsStronglyCartesian
CategoryTheory.Functor.obj
CategoryTheory.Functor.IsFiberedCategoryTheory.Functor.IsStronglyCartesian.isCartesian_of_isStronglyCartesian
isStronglyCartesian_of_exists_isCartesian
CategoryTheory.Functor.IsStronglyCartesian.comp
toIsPreFibered 📖mathematicalCategoryTheory.Functor.IsPreFibered

CategoryTheory.Functor.IsPreFibered

Definitions

NameCategoryTheorems
pullbackMap 📖CompOp
1 mathmath: pullbackMap.IsCartesian
pullbackObj 📖CompOp
2 mathmath: pullbackObj_proj, pullbackMap.IsCartesian

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isCartesian' 📖mathematicalCategoryTheory.Functor.IsCartesian
CategoryTheory.Functor.obj
pullbackObj_proj 📖mathematicalCategoryTheory.Functor.objpullbackObjCategoryTheory.IsHomLift.domain_eq
CategoryTheory.Functor.IsCartesian.toIsHomLift
pullbackMap.IsCartesian

CategoryTheory.Functor.IsPreFibered.pullbackMap

Theorems

NameKindAssumesProvesValidatesDepends On
IsCartesian 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsCartesian
CategoryTheory.Functor.IsPreFibered.pullbackObj
CategoryTheory.Functor.IsPreFibered.pullbackMap
CategoryTheory.IsPreFibered.exists_isCartesian

CategoryTheory.IsPreFibered

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isCartesian 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsCartesianCategoryTheory.Functor.IsPreFibered.exists_isCartesian'

---

← Back to Index