Documentation Verification Report

Grothendieck

📁 Source: Mathlib/CategoryTheory/FiberedCategory/Grothendieck.lean

Statistics

MetricCount
DefinitionscartesianLift, compIso, domainCartesianLift, homCartesianLift, instHasFibersForget, ι
6
TheoremscompIso_hom_app, compIso_inv_app, comp_const, instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instIsFiberedForget, isHomLift_cartesianLift, isHomLift_homCartesianLift, isStronglyCartesian_homCartesianLift, ι_map_base, ι_map_fiber, ι_obj_base, ι_obj_fiber
15
Total21

CategoryTheory.Pseudofunctor.CoGrothendieck

Definitions

NameCategoryTheorems
cartesianLift 📖CompOp
2 mathmath: isStronglyCartesian_homCartesianLift, isHomLift_cartesianLift
compIso 📖CompOp
2 mathmath: compIso_inv_app, compIso_hom_app
domainCartesianLift 📖CompOp
3 mathmath: isStronglyCartesian_homCartesianLift, isHomLift_cartesianLift, isHomLift_homCartesianLift
homCartesianLift 📖CompOp
1 mathmath: isHomLift_homCartesianLift
instHasFibersForget 📖CompOp
ι 📖CompOp
11 mathmath: instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, ι_map_base, ι_obj_fiber, ι_map_fiber, instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, ι_obj_base, comp_const, compIso_inv_app, instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, compIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
compIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
compIso
CategoryTheory.CategoryStruct.id
compIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
forget
CategoryTheory.Iso.inv
compIso
CategoryTheory.CategoryStruct.id
comp_const 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.ext_of_iso
instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Functor.Fiber
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
CategoryTheory.Cat.str
CategoryTheory.Functor.Fiber.fiberCategory
CategoryTheory.Functor.Fiber.inducedFunctor
ι
comp_const
CategoryTheory.Functor.essSurj_of_surj
comp_const
ext
instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.Fiber
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
CategoryTheory.Functor.Fiber.fiberCategory
CategoryTheory.Functor.Fiber.inducedFunctor
ι
comp_const
comp_const
CategoryTheory.Functor.congr_map
Hom.ext_iff
CategoryTheory.Category.comp_id
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.NatIso.inv_app_isIso
instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.Fiber
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
CategoryTheory.Functor.Fiber.fiberCategory
CategoryTheory.Functor.Fiber.inducedFunctor
ι
comp_const
comp_const
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.Functor.Fiber.instIsHomLiftIdMapFiberInclusion
CategoryTheory.IsHomLift.codomain_eq
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsHomLift.fac
CategoryTheory.Functor.Fiber.hom_ext
Hom.ext
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Functor.Fiber
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
CategoryTheory.Functor.Fiber.fiberCategory
CategoryTheory.Functor.Fiber.inducedFunctor
ι
comp_const
comp_const
instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor
instIsFiberedForget 📖mathematicalCategoryTheory.Functor.IsFibered
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
CategoryTheory.Functor.IsFibered.of_exists_isStronglyCartesian
isStronglyCartesian_homCartesianLift
isHomLift_cartesianLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
domainCartesianLift
cartesianLift
CategoryTheory.IsHomLift.map
isHomLift_homCartesianLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
base
domainCartesianLift
homCartesianLift
CategoryTheory.IsHomLift.map
isStronglyCartesian_homCartesianLift 📖mathematicalCategoryTheory.Functor.IsStronglyCartesian
CategoryTheory.Pseudofunctor.CoGrothendieck
category
forget
domainCartesianLift
cartesianLift
isHomLift_cartesianLift
isHomLift_homCartesianLift
Hom.ext
CategoryTheory.IsHomLift.domain_eq
CategoryTheory.IsHomLift.codomain_eq
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.IsHomLift.fac
CategoryTheory.Functor.map_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Iso.inv_hom_id
ι_map_base 📖mathematicalHom.base
CategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
CategoryTheory.CategoryStruct.id
ι_map_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
CategoryTheory.CategoryStruct.comp
base
fiber
CategoryTheory.Functor.obj
CategoryTheory.Cat.Hom.toFunctor
Prefunctor.map
Quiver.Hom.toLoc
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.id
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Pseudofunctor.mapId
ι_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι
ι_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
Prefunctor.obj
CategoryTheory.LocallyDiscrete
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
Opposite.op
CategoryTheory.Cat.str
CategoryTheory.Pseudofunctor.CoGrothendieck
category
ι

---

← Back to Index