Documentation Verification Report

HasFibers

📁 Source: Mathlib/CategoryTheory/FiberedCategory/HasFibers.lean

Statistics

MetricCount
DefinitionsHasFibers, Fib, homMk, isoMk, mk, mkIsoSelf, canonical, category, inducedFunctor, natIso, inducedMap, mkPullback, projMap, pullbackMap, ι
15
Theoremshom_ext, hom_ext_iff, isoMk_hom, isoMk_inv, map_homMk, mkIsoSelfIsHomLift, comp_const, equiv, fiber_factorization, homLift, inducedFunctor_comp, inducedFunctor_map_coe, inducedFunctor_obj_coe, inducedMap_comp, inducedMap_comp_assoc, instFaithfulFibι, instIsEquivalenceFibFiberInducedFunctor, proj_eq, isCartesian
19
Total34

HasFibers

Definitions

NameCategoryTheorems
Fib 📖CompOp
18 mathmath: inducedMap_comp, homLift, comp_const, inducedFunctor_obj_coe, inducedFunctor_comp, pullbackMap.isCartesian, Fib.mkIsoSelfIsHomLift, Fib.map_homMk, Fib.hom_ext_iff, equiv, instFaithfulFibι, inducedMap_comp_assoc, Fib.isoMk_inv, instIsEquivalenceFibFiberInducedFunctor, Fib.isoMk_hom, proj_eq, inducedFunctor_map_coe, fiber_factorization
canonical 📖CompOp
category 📖CompOp
18 mathmath: inducedMap_comp, homLift, comp_const, inducedFunctor_obj_coe, inducedFunctor_comp, pullbackMap.isCartesian, Fib.mkIsoSelfIsHomLift, Fib.map_homMk, Fib.hom_ext_iff, equiv, instFaithfulFibι, inducedMap_comp_assoc, Fib.isoMk_inv, instIsEquivalenceFibFiberInducedFunctor, Fib.isoMk_hom, proj_eq, inducedFunctor_map_coe, fiber_factorization
inducedFunctor 📖CompOp
4 mathmath: inducedFunctor_obj_coe, inducedFunctor_comp, instIsEquivalenceFibFiberInducedFunctor, inducedFunctor_map_coe
inducedMap 📖CompOp
2 mathmath: inducedMap_comp, inducedMap_comp_assoc
mkPullback 📖CompOp
1 mathmath: pullbackMap.isCartesian
projMap 📖CompOp
pullbackMap 📖CompOp
1 mathmath: pullbackMap.isCartesian
ι 📖CompOp
17 mathmath: inducedMap_comp, homLift, comp_const, inducedFunctor_obj_coe, inducedFunctor_comp, pullbackMap.isCartesian, Fib.mkIsoSelfIsHomLift, Fib.map_homMk, Fib.hom_ext_iff, equiv, instFaithfulFibι, inducedMap_comp_assoc, Fib.isoMk_inv, Fib.isoMk_hom, proj_eq, inducedFunctor_map_coe, fiber_factorization

Theorems

NameKindAssumesProvesValidatesDepends On
comp_const 📖mathematicalCategoryTheory.Functor.comp
Fib
category
ι
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
equiv 📖mathematicalCategoryTheory.Functor.IsEquivalence
Fib
category
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.Fiber.fiberCategory
CategoryTheory.Functor.Fiber.inducedFunctor
ι
comp_const
fiber_factorization 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsStronglyCartesian
Fib
category
ι
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.IsFibered.toIsPreFibered
pullbackMap.isCartesian
CategoryTheory.Functor.IsFibered.isStronglyCartesian_of_isCartesian
inducedMap_comp
homLift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
Fib
category
ι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.IsHomLift.of_fac
proj_eq
CategoryTheory.Functor.comp_map
CategoryTheory.Functor.congr_obj
comp_const
CategoryTheory.Functor.congr_hom
CategoryTheory.eqToHom_naturality
CategoryTheory.Category.comp_id
CategoryTheory.eqToHom_trans
inducedFunctor_comp 📖mathematicalι
CategoryTheory.Functor.comp
Fib
category
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.Fiber.fiberCategory
inducedFunctor
CategoryTheory.Functor.Fiber.fiberInclusion
CategoryTheory.Functor.Fiber.inducedFunctor_comp
comp_const
inducedFunctor_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Fib
category
ι
comp_const
CategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.Fiber.fiberCategory
inducedFunctor
comp_const
inducedFunctor_obj_coe 📖mathematicalCategoryTheory.Functor.obj
Fib
category
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.Fiber.fiberCategory
inducedFunctor
ι
inducedMap_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Fib
category
ι
CategoryTheory.Functor.map
inducedMap
Fib.map_homMk
CategoryTheory.Functor.IsCartesian.fac
inducedMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Fib
category
ι
CategoryTheory.Functor.map
inducedMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inducedMap_comp
instFaithfulFibι 📖mathematicalCategoryTheory.Functor.Faithful
Fib
category
ι
CategoryTheory.Functor.Faithful.of_iso
CategoryTheory.Functor.Faithful.comp
CategoryTheory.Functor.IsEquivalence.faithful
instIsEquivalenceFibFiberInducedFunctor
CategoryTheory.Functor.Fiber.instFaithfulFiberInclusion
instIsEquivalenceFibFiberInducedFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
Fib
category
CategoryTheory.Functor.Fiber
CategoryTheory.Functor.Fiber.fiberCategory
inducedFunctor
equiv
proj_eq 📖mathematicalCategoryTheory.Functor.obj
Fib
category
ι
comp_const

HasFibers.Fib

Definitions

NameCategoryTheorems
homMk 📖CompOp
3 mathmath: map_homMk, isoMk_inv, isoMk_hom
isoMk 📖CompOp
2 mathmath: isoMk_inv, isoMk_hom
mk 📖CompOp
mkIsoSelf 📖CompOp
1 mathmath: mkIsoSelfIsHomLift

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.Functor.map
HasFibers.Fib
HasFibers.category
HasFibers.ι
CategoryTheory.Functor.map_injective
HasFibers.instFaithfulFibι
hom_ext_iff 📖mathematicalCategoryTheory.Functor.map
HasFibers.Fib
HasFibers.category
HasFibers.ι
hom_ext
isoMk_hom 📖mathematicalCategoryTheory.Iso.hom
HasFibers.Fib
HasFibers.category
isoMk
homMk
CategoryTheory.Functor.obj
HasFibers.ι
isoMk_inv 📖mathematicalCategoryTheory.Iso.inv
HasFibers.Fib
HasFibers.category
isoMk
homMk
CategoryTheory.Functor.obj
HasFibers.ι
map_homMk 📖mathematicalCategoryTheory.Functor.map
HasFibers.Fib
HasFibers.category
HasFibers.ι
homMk
CategoryTheory.Functor.congr_obj
HasFibers.inducedFunctor_comp
CategoryTheory.Functor.congr_hom
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkIsoSelfIsHomLift 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
HasFibers.Fib
HasFibers.category
HasFibers.ι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
mkIsoSelf
CategoryTheory.Functor.IsEquivalence.essSurj
HasFibers.instIsEquivalenceFibFiberInducedFunctor

HasFibers.inducedFunctor

Definitions

NameCategoryTheorems
natIso 📖CompOp

HasFibers.pullbackMap

Theorems

NameKindAssumesProvesValidatesDepends On
isCartesian 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsCartesian
HasFibers.Fib
HasFibers.category
HasFibers.ι
HasFibers.mkPullback
HasFibers.pullbackMap
CategoryTheory.Category.id_comp
CategoryTheory.Functor.IsCartesian.of_iso_comp
CategoryTheory.Functor.IsPreFibered.pullbackMap.IsCartesian
HasFibers.Fib.mkIsoSelfIsHomLift

(root)

Definitions

NameCategoryTheorems
HasFibers 📖CompData

---

← Back to Index