Documentation Verification Report

HomLift

📁 Source: Mathlib/CategoryTheory/FiberedCategory/HomLift.lean

Statistics

MetricCount
DefinitionsIsHomLift, isoOfIsoLift, tacticSubst_hom_lift___
3
Theoremscodomain_eq, commSq, comp, comp_eqToHom_lift, comp_eqToHom_lift_iff, comp_id_lift, comp_lift_id_left, comp_lift_id_left', comp_lift_id_right, comp_lift_id_right', comp_of_lift_id, domain_eq, eqToHom_codomain_lift_id, eqToHom_comp_lift, eqToHom_comp_lift_iff, eqToHom_domain_lift_id, eq_of_isHomLift, fac, fac', id, id_comp_lift, id_lift_eqToHom_codomain, id_lift_eqToHom_domain, instIsHomLiftIdObj, inv, inv_lift, inv_lift_inv, isIso_of_lift_isIso, isoOfIsoLift_hom, isoOfIsoLift_hom_inv_id, isoOfIsoLift_inv_hom_id, lift_comp_eqToHom, lift_comp_eqToHom_iff, lift_comp_id, lift_eqToHom_comp, lift_eqToHom_comp_iff, lift_id_comp, lift_id_inv, lift_id_inv_isIso, map, of_commSq, of_commsq, of_fac, of_fac'
44
Total47

CategoryTheory

Definitions

NameCategoryTheorems
tacticSubst_hom_lift___ 📖CompOp

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsHomLift 📖CompData
65 mathmath: CategoryTheory.IsHomLift.eqToHom_domain_lift_id, IsStronglyCartesian.domainUniqueUpToIso_hom_isHomLift, CategoryTheory.IsHomLift.comp_lift_id_right', CategoryTheory.IsHomLift.inv_lift, CategoryTheory.IsHomLift.map, CategoryTheory.IsHomLift.of_fac, CategoryTheory.IsHomLift.inv_lift_inv, CategoryTheory.IsHomLift.comp_eqToHom_lift_iff, CategoryTheory.IsHomLift.eqToHom_comp_lift, CategoryTheory.IsHomLift.of_fac', IsCocartesian.toIsHomLift, IsStronglyCocartesian.toIsHomLift, IsStronglyCocartesian.universal_property', IsCartesian.domainUniqueUpToIso_inv_isHomLift, HasFibers.homLift, CategoryTheory.IsHomLift.comp_lift_id_right, CategoryTheory.IsHomLift.lift_comp_eqToHom, CategoryTheory.BasedNatTrans.isHomLift', CategoryTheory.IsHomLift.id, CategoryTheory.BasedFunctor.isHomLift_map, CategoryTheory.IsHomLift.id_comp_lift, CategoryTheory.IsHomLift.comp, CategoryTheory.IsHomLift.lift_id_comp, IsCartesian.universal_property, IsStronglyCartesian.universal_property', IsStronglyCocartesian.map_isHomLift, HasFibers.Fib.mkIsoSelfIsHomLift, CategoryTheory.IsHomLift.lift_eqToHom_comp_iff, IsStronglyCartesian.domainUniqueUpToIso_inv_isHomLift, CategoryTheory.Pseudofunctor.CoGrothendieck.isHomLift_cartesianLift, CategoryTheory.IsHomLift.comp_of_lift_id, CategoryTheory.IsHomLift.comp_lift_id_left', Fiber.instIsHomLiftIdMapFiberInclusion, IsCocartesian.universal_property, CategoryTheory.IsHomLift.lift_eqToHom_comp, CategoryTheory.IsHomLift.id_lift_eqToHom_domain, CategoryTheory.IsHomLift.comp_lift_id_left, CategoryTheory.IsHomLift.lift_comp_eqToHom_iff, IsCocartesian.map_isHomLift, CategoryTheory.IsHomLift.of_commSq, CategoryTheory.IsHomLift.lift_id_inv_isIso, CategoryTheory.IsHomLift.comp_id_lift, CategoryTheory.IsHomLift.id_lift_eqToHom_codomain, IsStronglyCartesian.universal_property, CategoryTheory.IsHomLift.of_commsq, CategoryTheory.IsHomLift.lift_id_inv, CategoryTheory.BasedFunctor.instIsHomLiftObjPIdObj, IsCartesian.domainUniqueUpToIso_hom_isHomLift, CategoryTheory.BasedFunctor.isHomLift_iff, CategoryTheory.BasedFunctor.preserves_isHomLift, IsStronglyCartesian.toIsHomLift, IsCartesian.map_isHomLift, CategoryTheory.IsHomLift.comp_eqToHom_lift, HasFibers.inducedFunctor_map_coe, CategoryTheory.IsHomLift.eqToHom_comp_lift_iff, CategoryTheory.IsHomLift.lift_comp_id, CategoryTheory.IsHomLift.eqToHom_codomain_lift_id, CategoryTheory.IsHomLift.instIsHomLiftIdObj, IsStronglyCartesian.map_isHomLift, CategoryTheory.IsHomLift.inv, CategoryTheory.BasedNatTrans.app_isHomLift, CategoryTheory.Pseudofunctor.CoGrothendieck.isHomLift_homCartesianLift, IsStronglyCocartesian.universal_property, CategoryTheory.BasedNatTrans.isHomLift, IsCartesian.toIsHomLift

CategoryTheory.IsHomLift

Definitions

NameCategoryTheorems
isoOfIsoLift 📖CompOp
4 mathmath: inv_lift, isoOfIsoLift_hom, isoOfIsoLift_hom_inv_id, isoOfIsoLift_inv_hom_id

Theorems

NameKindAssumesProvesValidatesDepends On
codomain_eq 📖mathematicalCategoryTheory.Functor.obj
commSq 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
domain_eq
codomain_eq
domain_eq
codomain_eq
fac
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp
comp 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
of_commSq
domain_eq
codomain_eq
CategoryTheory.Functor.map_comp
CategoryTheory.CommSq.horiz_comp
commSq
comp_eqToHom_lift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
comp_eqToHom_lift_iff 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
comp_eqToHom_lift
comp_id_lift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
comp_lift_id_left 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.id_comp
comp
comp_lift_id_left' 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp_lift_id_left
codomain_eq
domain_eq
comp_lift_id_right 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
comp
comp_lift_id_right' 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp_lift_id_right
codomain_eq
domain_eq
comp_of_lift_id 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
comp
CategoryTheory.Category.comp_id
domain_eq 📖mathematicalCategoryTheory.Functor.obj
eqToHom_codomain_lift_id 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
eqToHom_comp_lift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
eqToHom_comp_lift_iff 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
eqToHom_comp_lift
eqToHom_domain_lift_id 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
eq_of_isHomLift 📖mathematicalCategoryTheory.Functor.mapdomain_eq
codomain_eq
fac
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.eqToHom
domain_eq
CategoryTheory.Functor.map
codomain_eq
domain_eq
codomain_eq
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
fac' 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.eqToHom
domain_eq
codomain_eq
domain_eq
codomain_eq
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
id 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
instIsHomLiftIdObj
id_comp_lift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.comp_id
id_lift_eqToHom_codomain 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
id_lift_eqToHom_domain 📖mathematicalCategoryTheory.Functor.objCategoryTheory.Functor.IsHomLift
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
instIsHomLiftIdObj 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map_id
map
inv 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.inv
inv_lift_inv
inv_lift 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Iso.inv
isoOfIsoLift
of_commSq
codomain_eq
domain_eq
CategoryTheory.CommSq.horiz_inv
commSq
inv_lift_inv 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Iso.inv
of_commSq
codomain_eq
domain_eq
CategoryTheory.CommSq.horiz_inv
commSq
isIso_of_lift_isIso 📖mathematicalCategoryTheory.IsIsodomain_eq
codomain_eq
CategoryTheory.IsIso.comp_isIso
CategoryTheory.instIsIsoEqToHom
CategoryTheory.Functor.map_isIso
fac
isoOfIsoLift_hom 📖mathematicalCategoryTheory.Iso.hom
isoOfIsoLift
isoOfIsoLift_hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
isoOfIsoLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
isoOfIsoLift_inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
isoOfIsoLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
lift_comp_eqToHom 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
lift_comp_eqToHom_iff 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
lift_comp_eqToHom
lift_comp_id 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.comp_id
lift_eqToHom_comp 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
lift_eqToHom_comp_iff 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.id_comp
lift_eqToHom_comp
lift_id_comp 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
lift_id_inv 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.IsIso.id
inv_lift_inv
CategoryTheory.IsIso.inv_id
lift_id_inv_isIso 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.inv
CategoryTheory.IsIso.id
inv
CategoryTheory.IsIso.inv_id
map 📖mathematicalCategoryTheory.Functor.IsHomLift
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
of_commSq 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CommSq
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.IsHomLiftof_commsq
CategoryTheory.CommSq.w
of_commsq 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Functor.IsHomLiftmap
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
of_fac 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.map
CategoryTheory.Functor.IsHomLiftCategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
of_fac' 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.IsHomLiftmap
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

---

← Back to Index