Documentation Verification Report

Const

📁 Source: Mathlib/CategoryTheory/Functor/Const.lean

Statistics

MetricCount
DefinitionscompConstIso, const, opObjOp, opObjUnop, constComp, constCompWhiskeringLeftIso, Const
7
TheoremscompConstIso_hom_app_app, compConstIso_inv_app_app, opObjOp_hom_app, opObjOp_inv_app, opObjUnop_hom_app, opObjUnop_inv_app, unop_functor_op_obj_map, constCompWhiskeringLeftIso_hom_app_app, constCompWhiskeringLeftIso_inv_app_app, constComp_hom_app, constComp_inv_app, const_map_app, const_obj_map, const_obj_obj, instFaithfulConstOfNonempty
15
Total22

CategoryTheory.Functor

Definitions

NameCategoryTheorems
compConstIso 📖CompOp
3 mathmath: CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, compConstIso_hom_app_app, compConstIso_inv_app_app
const 📖CompOp
1006 mathmath: CategoryTheory.Limits.Trident.condition_assoc, CategoryTheory.Limits.Cocones.precompose_obj_ι, TopCat.binaryCofan_isColimit_iff, CategoryTheory.MorphismProperty.exists_isPushout_of_isFiltered, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj_assoc, CategoryTheory.Monad.ForgetCreatesColimits.commuting, CategoryTheory.Limits.limitConeOfUnique_cone_π, CategoryTheory.WithTerminal.mkCommaObject_right, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_right, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left_symm, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.WithInitial.equivComma_functor_obj_right_obj, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac, LightProfinite.Extend.functorOp_obj, CategoryTheory.Presheaf.isSheaf_of_isTerminal, CategoryTheory.Limits.Bicone.toCocone_ι_app_mk, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, CategoryTheory.Limits.Cotrident.ofCocone_ι, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv, CategoryTheory.WithTerminal.equivComma_functor_obj_left_obj, CategoryTheory.Limits.Trident.app_zero, CategoryTheory.Limits.IsColimit.fac, AlgebraicGeometry.opensCone_pt, CategoryTheory.Limits.Cone.unop_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.Limits.Cone.ofTrident_π, CategoryTheory.cocones_map_app_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_obj, IsEventuallyConstantFrom.cocone_ι_app, CategoryTheory.Limits.ReflexiveCofork.app_one_eq_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, CategoryTheory.Limits.Cocone.toOver_ι_app, CategoryTheory.Limits.Multicofork.ofπ_ι_app, mapCocone_ι_app, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_left, CategoryTheory.GrothendieckTopology.liftToDiagramLimitObjAux_fac_assoc, CategoryTheory.Limits.colimit.cocone_ι, isLimitConeOfIsRightKanExtension_lift, CategoryTheory.Limits.Pi.cone_π, Profinite.Extend.functorOp_map, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.hf, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, AlgebraicGeometry.exists_isAffineOpen_preimage_eq, CategoryTheory.Limits.Fork.π_comp_hom, CategoryTheory.Limits.CoconeMorphism.w, CategoryTheory.Limits.BinaryBicone.toCone_π_app_right, CategoryTheory.Limits.ColimitPresentation.changeDiag_ι, CategoryTheory.Limits.Cone.equiv_inv_pt, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inl, CategoryTheory.Limits.PushoutCocone.mk_ι_app_zero, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom_assoc, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, isColimitCoconeOfIsLeftKanExtension_desc, CategoryTheory.Limits.IsLimit.map_π, CategoryTheory.Limits.Cocone.whisker_ι, CategoryTheory.Limits.mono_of_isLimit_parallelFamily, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedCone_π_app_f, IsEventuallyConstantFrom.isIso_ι_of_isColimit', CategoryTheory.Limits.PullbackCone.π_app_right, CategoryTheory.Limits.PushoutCocone.unop_π_app, CategoryTheory.Limits.IndObjectPresentation.extend_ι_app_app, CategoryTheory.Limits.Fork.unop_ι_app_zero, CategoryTheory.Limits.Cocone.ofCotrident_ι, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, CategoryTheory.Limits.LimitPresentation.w, Profinite.Extend.cone_π_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.g_app, Fiber.fiberInclusionCompIsoConst_inv_app, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.Limits.Cocone.unop_π, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, cones_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, CategoryTheory.TransfiniteCompositionOfShape.fac_assoc, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, CategoryTheory.Limits.Cofork.ofCocone_ι, CategoryTheory.Limits.MonoCoprod.binaryCofan_inl, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, Condensed.discrete_map, CategoryTheory.Limits.limitConstTerminal_inv_π_assoc, CategoryTheory.Limits.Fork.isoForkOfι_hom_hom, CategoryTheory.Monad.beckCoequalizer_desc, CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.fac, CategoryTheory.Limits.Fork.IsLimit.mono, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, CategoryTheory.Limits.Cone.toCostructuredArrow_obj, CategoryTheory.constantCommuteCompose_hom_app_val, CategoryTheory.Limits.colimit.homIso_hom, IsEventuallyConstantTo.cone_π_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.WithInitial.ofCommaObject_obj, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_one, CategoryTheory.FinitaryExtensive.mono_ι, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, RightExtension.coneAt_π_app, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, CategoryTheory.Limits.IsColimit.homIso_hom, CategoryTheory.Limits.Cocone.underPost_ι_app, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, CategoryTheory.Limits.coneOfDiagramTerminal_π_app, CategoryTheory.Limits.Cotrident.π_eq_app_one, CategoryTheory.Limits.constCone_pt, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Limits.Cone.whisker_π, CategoryTheory.Limits.Cocone.toCostructuredArrow_map, Fiber.fiberInclusion_comp_eq_const, CategoryTheory.WithTerminal.equivComma_functor_obj_left_map, LightCondensed.discrete_map, CategoryTheory.Limits.Types.pUnitCocone_ι_app, CategoryTheory.WithTerminal.mkCommaMorphism_left_app, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descMonoidHom_quotMk, CategoryTheory.Limits.IsColimit.mono_ι_app_of_isFiltered, CategoryTheory.Under.liftCone_pt, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.WithTerminal.equivComma_functor_obj_right, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.PullbackCone.mk_π_app, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Limits.IsColimit.ι_map, CategoryTheory.WithTerminal.ofCommaObject_obj, CategoryTheory.Limits.Types.binaryCoproductCocone_ι_app, CategoryTheory.BinaryCofan.isVanKampen_iff, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_incl, CategoryTheory.Limits.compYonedaSectionsEquiv_apply_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp, compConstIso_hom_app_app, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_right', CategoryTheory.Over.conePost_obj_π_app, initial_const_initial, CategoryTheory.Limits.Cocone.w_assoc, ModuleCat.HasLimit.productLimitCone_cone_π, ModuleCat.HasColimit.colimitCocone_ι_app, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.Limits.Cofork.unop_π_app_one, AddCommGrpCat.Colimits.colimitCocone_ι_app, TopCat.sigmaCofan_ι_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap, CategoryTheory.Comonad.ForgetCreatesColimits'.newCocone_ι_app, CategoryTheory.Limits.Cofork.IsColimit.epi, CategoryTheory.Limits.Cocone.fromCostructuredArrow_ι_app, CategoryTheory.Limits.Cone.fromStructuredArrow_π_app, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_right, CategoryTheory.WithInitial.equivComma_functor_obj_right_map, Profinite.exists_locallyConstant_finite_aux, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_π, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp, CategoryTheory.Limits.Types.FilteredColimit.colimit_eq_iff_aux, Final.extendCocone_obj_ι_app, CategoryTheory.Under.lift_obj, CategoryTheory.ProdPreservesConnectedLimits.forgetCone_π, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Limits.ConeMorphism.w, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Limits.LimitPresentation.self_π, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.TransfiniteCompositionOfShape.ici_F, CategoryTheory.Limits.LimitPresentation.changeDiag_π, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_right, CategoryTheory.Limits.colimit.toOver_ι_app, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff, CategoryTheory.Limits.Multicofork.snd_app_right_assoc, CategoryTheory.Limits.Bicone.toCone_π_app_mk, CategoryTheory.Limits.coneOfCoconeRightOp_π, CategoryTheory.Limits.limitConstTerminal_hom, const.opObjUnop_hom_app, CategoryTheory.Limits.Trident.condition, CategoryTheory.Limits.Cofork.condition_assoc, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv, CategoryTheory.WithTerminal.commaFromOver_obj_right, CategoryTheory.Limits.Fork.ι_postcompose, CategoryTheory.Limits.BinaryBicone.toCone_π_app_left, CategoryTheory.Limits.Fork.equivOfIsos_functor_obj_ι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, Profinite.Extend.functorOp_obj, CategoryTheory.Limits.coneOfDiagramInitial_π_app, CategoryTheory.Limits.limitCompCoyonedaIsoCone_hom_app, CategoryTheory.Limits.instHasColimitObjFunctorConstInitial, CategoryTheory.Limits.WidePullbackShape.mkCone_π_app, CategoryTheory.Monad.ForgetCreatesLimits.newCone_π_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, ModuleCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.WithInitial.mkCommaMorphism_right_app, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot, CategoryTheory.Limits.Types.FilteredColimit.jointly_surjective_of_isColimit₂, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.MorphismProperty.colimitsOfShape.of_isColimit, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_isColimit_desc, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, LightProfinite.lightToProfinite_map_proj_eq, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Limits.IsColimit.ι_map_assoc, CategoryTheory.Limits.CokernelCofork.IsColimit.isIso_π, CategoryTheory.Limits.Concrete.isColimit_rep_eq_iff_exists, HasFibers.comp_const, CategoryTheory.Limits.Multiequalizer.multifork_π_app_left, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.Limits.ConeMorphism.map_w_assoc, cones_obj, CategoryTheory.WithInitial.mkCommaObject_right_obj, CategoryTheory.Limits.limit.isoLimitCone_hom_π_assoc, CategoryTheory.Limits.IsColimit.homEquiv_apply, pointwiseLeftKanExtension_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, AlgebraicGeometry.isBasis_preimage_isAffineOpen, CategoryTheory.Limits.PullbackCone.op_ι_app, constComp_inv_app, CategoryTheory.FinitaryExtensive.mono_inl_of_isColimit, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left, CategoryTheory.Limits.IsColimit.isIso_colimMap_ι, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.Limits.Fork.unop_ι_app_one, CategoryTheory.Limits.Cone.equivCostructuredArrow_inverse, AddCommGrpCat.HasLimit.productLimitCone_isLimit_lift, CategoryTheory.Limits.pointwiseCocone_ι_app_app, CategoryTheory.Limits.Types.Colimit.ι_desc_apply', CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, CategoryTheory.Limits.hasLimitsOfShape_iff_isLeftAdjoint_const, CategoryTheory.Limits.CokernelCofork.condition, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_epi, PartOrdEmb.Limits.CoconePt.fac_apply, Initial.extendCone_obj_π_app', CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_π_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, CategoryTheory.Limits.ColimitPresentation.map_ι, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left, CategoryTheory.WithTerminal.equivComma_functor_map_right, CategoryTheory.Coyoneda.colimitCocone_ι_app, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_base, CategoryTheory.WithInitial.mkCommaMorphism_left, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv_assoc, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_cocone_ι_app, CategoryTheory.Limits.Cotrident.condition_assoc, AddCommGrpCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.Limits.CoconeMorphism.w_assoc, CategoryTheory.Limits.coneOfCoconeLeftOp_π_app, CategoryTheory.Limits.LimitPresentation.reindex_π, CategoryTheory.Limits.coneOfCoconeUnop_π, PresheafOfModules.limitCone_π_app_app, CategoryTheory.Limits.Types.isLimitEquivSections_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv_assoc, CategoryTheory.Limits.CompleteLattice.colimitCocone_cocone_ι_app, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.Cofork.IsColimit.homIso_apply_coe, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, CategoryTheory.Limits.PushoutCocone.ofCocone_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.isIso_f, CategoryTheory.Limits.coneOfIsSplitMono_π_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimitCocone_cocone_ι_app, PrincipalSeg.cocone_ι_app, CommRingCat.instIsLocalHomCarrierObjWalkingParallelPairFunctorConstPtEqualizerForkZeroParallelPairRingHomHomι, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Limits.Multicofork.ofSigmaCofork_π, CategoryTheory.Limits.Concrete.isColimit_exists_rep, CategoryTheory.sectionsFunctorNatIsoCoyoneda_inv_app_coe, ModuleCat.directLimitIsColimit_desc, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_hom, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Cones.functoriality_obj_π_app, SemiRingCat.FilteredColimits.colimitCoconeIsColimit.descAddMonoidHom_quotMk, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom, TopCat.nonempty_isLimit_iff_eq_induced, CategoryTheory.Limits.Multicofork.π_eq_app_right, CategoryTheory.Limits.Cone.ofPullbackCone_π, AlgebraicGeometry.exists_appTop_π_eq_of_isAffine_of_isLimit, CategoryTheory.Limits.ConeMorphism.map_w, CategoryTheory.Limits.ColimitPresentation.self_diag, CategoryTheory.Limits.limit.isoLimitCone_hom_π, CategoryTheory.Limits.LimitPresentation.ofIso_π, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_right, final_const_of_isTerminal, CategoryTheory.Limits.Fork.ofι_π_app, CategoryTheory.WithInitial.mkCommaObject_hom_app, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Limits.IsLimit.hom_lift, CategoryTheory.Limits.coconePointwiseProduct_ι_app, CategoryTheory.FinitaryExtensive.mono_inr_of_isColimit, sectionsEquivHom_naturality, CategoryTheory.Limits.PullbackCone.mk_π_app_right, CategoryTheory.Limits.Cofork.op_π_app_zero, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.instIsIsoAppIncl, CategoryTheory.Limits.Cofork.IsColimit.π_desc_assoc, CategoryTheory.Limits.ColimitPresentation.Total.Hom.w, CategoryTheory.Limits.coneOfConeCurry_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, PartOrdEmb.Limits.cocone_ι_app, CategoryTheory.Limits.Types.limitCone_π_app, CategoryTheory.Limits.PushoutCocone.condition_zero, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.Limits.Cone.toStructuredArrowCone_π_app, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, CategoryTheory.TransfiniteCompositionOfShape.fac, CategoryTheory.CostructuredArrow.CreatesConnected.natTransInCostructuredArrow_app, CategoryTheory.Limits.Cocone.toStructuredArrow_obj, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, CategoryTheory.Limits.limitConstTerminal_inv_π, CategoryTheory.IsPushout.of_isColimit_binaryCofan_of_isInitial, CategoryTheory.Limits.opCompYonedaSectionsEquiv_apply_app, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp_assoc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, CategoryTheory.Limits.PullbackCone.mk_π_app_one, CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inl, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.transitionCocone_ι_app, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, LightProfinite.Extend.functor_map, CategoryTheory.Limits.CompleteLattice.limitCone_isLimit_lift, CategoryTheory.Limits.PushoutCocone.ι_app_left, CategoryTheory.Over.conePost_map_hom, CategoryTheory.WithTerminal.mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_is_coproduct, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.Over.lift_obj, CategoryTheory.Limits.Fork.ofCone_π, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_left, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_isLimit_lift, CategoryTheory.WithTerminal.mkCommaMorphism_right, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, AlgebraicGeometry.exists_preimage_eq, CategoryTheory.Limits.KernelFork.IsLimit.isIso_ι, CategoryTheory.WithInitial.equivComma_functor_map_left, CategoryTheory.Limits.Cofork.π_precompose, cocones_obj, CategoryTheory.Limits.compCoyonedaSectionsEquiv_symm_apply_coe, constCompWhiskeringLeftIso_hom_app_app, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, CategoryTheory.Limits.Cocone.equivStructuredArrow_unitIso, CategoryTheory.Limits.IndObjectPresentation.yoneda_isColimit_desc, CategoryTheory.Limits.KernelFork.condition, Profinite.exists_isClopen_of_cofiltered, CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen, CategoryTheory.Limits.Bicone.ofColimitCocone_ι, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc, CategoryTheory.Limits.Cofan.mk_ι_app, CategoryTheory.Limits.BinaryCofan.isColimit_iff_isIso_inr, CategoryTheory.Limits.PushoutCocone.mk_ι_app, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.Limits.compCoyonedaSectionsEquiv_apply_app, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_right, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.Mono.cofanInr_of_binaryCoproductDisjoint, CategoryTheory.Limits.PushoutCocone.ι_app_right, CategoryTheory.WithInitial.equivComma_inverse_map_app, coconeOfIsLeftKanExtension_ι, CategoryTheory.Limits.coneRightOpOfCocone_π, CategoryTheory.Limits.LimitPresentation.self_diag, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd, CategoryTheory.Limits.PullbackCone.π_app_left, TopCat.isClosed_iff_of_isColimit, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, CategoryTheory.Limits.isIso_colimit_cocone_parallelPair_of_eq, CategoryTheory.Mono.cofanInl_of_binaryCoproductDisjoint, initial_const_of_isInitial, CategoryTheory.Limits.Multifork.app_left_eq_ι, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_pt, instIsCardinalAccessibleObjConst, CategoryTheory.Limits.coconeOfConeRightOp_ι, CategoryTheory.Limits.Fork.op_π, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Under.liftCone_π_app, CategoryTheory.Limits.Cocone.ofCofork_ι, CategoryTheory.Pairwise.cocone_ι_app, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.F_map, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Mon.limitCone_π_app_hom, CategoryTheory.Comma.limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.WithInitial.equivComma_functor_map_right_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, Profinite.Extend.functor_obj, Initial.extendCone_map_hom, CategoryTheory.Limits.Cone.toCostructuredArrow_map, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.Limits.BinaryFan.π_app_right, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc, CategoryTheory.Limits.BinaryCofan.ι_app_right, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, CategoryTheory.Limits.Fork.π_comp_hom_assoc, CategoryTheory.Limits.IsColimit.homEquiv_symm_naturality, Accessible.Limits.isColimitMapCocone.surjective, coconeTypesEquiv_symm_apply_ι, CategoryTheory.MorphismProperty.PreIndSpreads.exists_isPushout, CategoryTheory.WithInitial.mkCommaObject_right_map, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.Limits.Multicofork.map_ι_app, CategoryTheory.TransfiniteCompositionOfShape.ici_isoBot, TopCat.coinduced_of_isColimit, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_ι_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Limits.PushoutCocone.op_π_app, CategoryTheory.Comonad.ForgetCreatesLimits'.newCone_π, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, CategoryTheory.Limits.limit.lift_π_app, CategoryTheory.Limits.Cone.equiv_inv_π, CategoryTheory.biconeMk_map, CategoryTheory.WithInitial.commaFromUnder_obj_hom_app, CategoryTheory.Limits.hasColimitsOfShape_iff_isRightAdjoint_const, CategoryTheory.Limits.Cocone.isColimit_iff_isIso_colimMap_ι, Final.extendCocone_obj_ι_app', CategoryTheory.WithInitial.commaFromUnder_obj_right, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.cones_obj_map_app, CategoryTheory.Limits.Types.Small.limitCone_π_app, CategoryTheory.Limits.PushoutCocone.coequalizer_ext, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right_assoc, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.Limits.Cocones.functoriality_obj_ι_app, CategoryTheory.Limits.Cone.overPost_pt, CategoryTheory.BinaryCofan.mono_inr_of_isVanKampen, Initial.limit_cone_comp_aux, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.IndObjectPresentation.yoneda_ι_app, CategoryTheory.Limits.Types.Limit.lift_π_apply, CategoryTheory.Limits.Cofork.condition, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right, CategoryTheory.Limits.ConeMorphism.w_assoc, CategoryTheory.Limits.PullbackCone.unop_ι_app, CategoryTheory.SmallObject.SuccStruct.arrowMap_ofCocone_to_top, CategoryTheory.Limits.Multifork.toPiFork_π_app_one, CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none, AddCommGrpCat.Colimits.toCocone_ι_app, CategoryTheory.Limits.coconeOfDiagramTerminal_ι_app, AddCommGrpCat.Colimits.Quot.ι_desc, Preorder.coconeOfUpperBound_ι_app, CategoryTheory.Limits.asEmptyCocone_ι_app, CategoryTheory.Limits.Concrete.to_product_injective_of_isLimit, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_eq, skyscraperPresheafCocone_ι_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.cocones_obj_map_app, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit, AddCommGrpCat.HasLimit.productLimitCone_cone_π, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, equiv_unitIso, CategoryTheory.Limits.coconeOfDiagramInitial_ι_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Limits.coconeFiberwiseColimitOfCocone_ι_app, CategoryTheory.Limits.limit.isoLimitCone_inv_π_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, CategoryTheory.Limits.Cotrident.IsColimit.homIso_symm_apply, CategoryTheory.Limits.ColimitPresentation.w_assoc, CategoryTheory.Limits.Cones.postcompose_obj_π, CategoryTheory.StructuredArrow.map_map_left, mapCone₂_π_app, CategoryTheory.Limits.Cones.functoriality_map_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.sq, CategoryTheory.Coyoneda.colimitCoconeIsColimit_desc, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, const_map_app, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_left, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, LightProfinite.Extend.functorOp_map, const.opObjOp_hom_app, CategoryTheory.TransfiniteCompositionOfShape.ici_isColimit, CategoryTheory.Limits.colimit.ι_desc_apply, Alexandrov.lowerCone_π_app, CategoryTheory.extendCofan_ι_app, CategoryTheory.Limits.Fork.condition, sectionsEquivHom_naturality_symm, CategoryTheory.Limits.coneLeftOpOfCocone_π_app, CategoryTheory.StructuredArrow.mapIso_functor_map_left, ModuleCat.binaryProductLimitCone_cone_π_app_left, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, TopCat.continuous_iff_of_isColimit, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CategoryTheory.Limits.KernelFork.app_one, coneOfIsRightKanExtension_π, CategoryTheory.Limits.Fork.app_zero_eq_ι, CategoryTheory.Limits.limit.cone_π, CategoryTheory.Limits.IsLimit.isIso_limMap_π, CategoryTheory.Limits.Types.Colimit.ι_desc_apply, CategoryTheory.Limits.limit.lift_π_apply, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_left, ProfiniteGrp.cone_π_app, CategoryTheory.Limits.preservesColimits_const, CategoryTheory.Limits.Trident.ofCone_π, CompHausLike.pullback.cone_π, CategoryTheory.Limits.Cocone.w, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, const.opObjOp_inv_app, CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp, mapCone_π_app, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right_symm, CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right_assoc, CategoryTheory.Limits.Cone.equivCostructuredArrow_functor, CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app, CategoryTheory.SmallObject.SuccStruct.ofCocone_map_to_top, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Sheaf.coneΓ_π_app, CategoryTheory.Limits.Fork.equivOfIsos_inverse_obj_ι, CategoryTheory.WithTerminal.commaFromOver_obj_hom_app, CategoryTheory.Limits.colimit.ι_desc, CategoryTheory.Limits.coneOfConeUncurry_π_app, const.unop_functor_op_obj_map, CategoryTheory.Limits.MonoCoprod.mono_inl_iff, CategoryTheory.Limits.Types.jointly_surjective_of_isColimit, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.Limits.Multicofork.fst_app_right, constCompEvaluationObj_inv_app, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, CategoryTheory.WithInitial.equivComma_unitIso_inv_app_app, CategoryTheory.Limits.asEmptyCone_π_app, CategoryTheory.Limits.Fork.op_ι_app, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_incl, IsEventuallyConstantTo.isIso_π_of_isLimit, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.Limits.ColimitPresentation.Total.Hom.w_assoc, CategoryTheory.IsPreconnected.iso_constant, CategoryTheory.Limits.Bicone.toCocone_ι_app, CategoryTheory.WithInitial.equivComma_functor_obj_left, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Limits.Trident.ofι_π_app, CategoryTheory.Limits.coneOfSectionCompYoneda_π, CategoryTheory.Limits.Concrete.surjective_π_app_zero_of_surjective_map, Profinite.exists_locallyConstant, CategoryTheory.Limits.Trident.equalizer_ext, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_inr, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp, CategoryTheory.extendFan_π_app, coconeTypesEquiv_apply_ι_app, CategoryTheory.Limits.preservesLimits_const, CategoryTheory.Limits.Cocone.w_apply, CategoryTheory.Limits.BinaryBicone.ofLimitCone_snd, AlgebraicGeometry.ExistsHomHomCompEqCompAux.ha, CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_section_, CategoryTheory.Over.conePost_obj_pt, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, CategoryTheory.coherentTopology.epi_π_app_zero_of_epi, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, const.opObjUnop_inv_app, CategoryTheory.Limits.Trident.ι_eq_app_zero, CategoryTheory.SmallObject.πFunctorObj_eq, HasCardinalLT.Set.cocone_ι_app, CategoryTheory.Limits.Fork.op_ι_app_one, CategoryTheory.Limits.Cone.w, CategoryTheory.Limits.mono_of_isLimit_fork, CategoryTheory.Limits.PullbackCone.ofCone_π, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_fst, CategoryTheory.Limits.LimitPresentation.map_π, CategoryTheory.Presheaf.coconeOfRepresentable_naturality, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.WithTerminal.mkCommaObject_hom_app, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hab, CategoryTheory.WithTerminal.mkCommaObject_left_obj, mapCocone₂_ι_app, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, CategoryTheory.Limits.limitCompCoyonedaIsoCone_inv, CategoryTheory.Limits.Cofork.unop_π_app_zero, CategoryTheory.WithInitial.equivComma_unitIso_hom_app_app, CategoryTheory.Limits.IsColimit.hom_desc, Final.colimit_cocone_comp_aux, CategoryTheory.FunctorToTypes.jointly_surjective, CategoryTheory.Limits.Cofork.IsColimit.existsUnique, HomologicalComplex.coconeOfHasColimitEval_ι_app_f, CategoryTheory.Limits.Cone.toStructuredArrow_obj, CategoryTheory.WithTerminal.commaFromOver_map_right, CommRingCat.coproductCoconeIsColimit_desc, CategoryTheory.Limits.Cotrident.app_one, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.sectionsFunctorNatIsoCoyoneda_hom_app_app, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, LightCondensed.discrete_obj, CategoryTheory.Limits.IsLimit.fac_assoc, CategoryTheory.Limits.CokernelCofork.condition_assoc, CategoryTheory.Limits.BinaryFan.assoc_snd, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, SSet.iSup_range_eq_top_of_isColimit, constComp_hom_app, CategoryTheory.instFullFunctorConstOfIsConnected, CategoryTheory.Limits.limit.homIso_hom, CategoryTheory.Limits.colimitConstInitial_inv, ModuleCat.FilteredColimits.ι_colimitDesc, CategoryTheory.Limits.Cocone.ofPushoutCocone_ι, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv_assoc, CategoryTheory.Limits.ColimitPresentation.reindex_ι, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, TopCat.coneOfConeForget_π_app, CategoryTheory.Limits.Bicone.ofLimitCone_π, CategoryTheory.Limits.colimit.ι_coconeMorphism, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.WithInitial.commaFromUnder_obj_left, CategoryTheory.Limits.Cone.ofFork_π, CategoryTheory.Limits.CokernelCofork.map_condition, constCompEvaluationObj_hom_app, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, TopCat.induced_of_isLimit, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom, CategoryTheory.TransfiniteCompositionOfShape.iic_incl_app, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map, CategoryTheory.Limits.coconeLeftOpOfCone_ι_app, constCompWhiskeringLeftIso_inv_app_app, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty', CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_pt, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv, CategoryTheory.Limits.Cone.isLimit_iff_isIso_limMap_π, CategoryTheory.Limits.colimit.ι_desc_assoc, CategoryTheory.IsPushout.of_is_coproduct, CategoryTheory.Limits.coconeRightOpOfCone_ι, CategoryTheory.Limits.Cocone.equivStructuredArrow_inverse, CategoryTheory.Limits.colimit.ι_desc_app_assoc, CategoryTheory.Limits.Cocone.toCostructuredArrow_obj, CategoryTheory.Limits.PullbackCone.combine_pt_map, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, CategoryTheory.Limits.Types.jointly_surjective, CategoryTheory.Limits.PullbackCone.equalizer_ext, CategoryTheory.Limits.CokernelCofork.map_π, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_snd_assoc, CategoryTheory.Over.liftCocone_ι_app, final_const_terminal, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, Preorder.coneOfLowerBound_π_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app, CategoryTheory.Limits.wideCoequalizer.cotrident_ι_app_one, CategoryTheory.Limits.limit.lift_π_assoc, ModuleCat.directLimitCocone_ι_app, CategoryTheory.Limits.IsColimit.ι_smul, AddCommGrpCat.HasLimit.lift_hom_apply, Profinite.Extend.cocone_ι_app, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, instFaithfulConstOfNonempty, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, CategoryTheory.Limits.BinaryCofan.ι_app_left, CategoryTheory.Limits.ColimitPresentation.ofIso_ι, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_π_app, CategoryTheory.Limits.BinaryBicone.toCocone_ι_app_left, CategoryTheory.Limits.Multifork.ofPiFork_π_app_right, pointwiseRightKanExtension_map, CategoryTheory.Limits.PushoutCocone.mk_ι_app_right, AlgebraicGeometry.Scheme.empty_presheaf, CategoryTheory.Limits.Multicofork.snd_app_right, LightCondensed.epi_π_app_zero_of_epi, CategoryTheory.Limits.Cotrident.condition, CategoryTheory.Limits.Multifork.ofPiFork_π_app_left, AlgebraicGeometry.exists_appTop_π_eq_of_isLimit, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_cone_π_app, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom_assoc, CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, CategoryTheory.Limits.Cocones.functoriality_map_hom, ModuleCat.HasLimit.lift_hom_apply, CategoryTheory.Limits.combineCocones_ι_app_app, CategoryTheory.FunctorToTypes.binaryProductCone_π_app, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom_assoc, CategoryTheory.Limits.Multifork.ofι_π_app, TopCat.nonempty_isColimit_iff_eq_coinduced, CategoryTheory.Limits.limit.isoLimitCone_inv_π, CategoryTheory.Limits.Bicone.toCone_π_app, CategoryTheory.WithTerminal.equivComma_functor_map_left_app, HomologicalComplex.coneOfHasLimitEval_π_app_f, CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone_ι_app_f, CategoryTheory.Subobject.leInfCone_π_app_none, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w_assoc, CategoryTheory.Limits.PullbackCone.condition_one, CategoryTheory.GrothendieckTopology.coneCompEvaluationOfConeCompDiagramFunctorCompEvaluation_π_app, CategoryTheory.FunctorToTypes.binaryCoproductCocone_ι_app, CategoryTheory.Limits.Sigma.cocone_ι, sectionsEquivHom_apply_app, CategoryTheory.Limits.BinaryBicone.ofLimitCone_fst, CategoryTheory.Limits.Cone.toUnder_π_app, CategoryTheory.Limits.coneOfSectionCompCoyoneda_π, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp_assoc, CategoryTheory.Limits.CoconeMorphism.map_w_assoc, CategoryTheory.IsCardinalPresentable.exists_hom_of_isColimit, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.Limits.IsColimit.isIso_ι_app_of_isTerminal, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, CategoryTheory.Limits.coconeOfConeLeftOp_ι_app, CategoryTheory.Limits.limit.coneMorphism_π, AlgebraicGeometry.Scheme.AffineZariskiSite.cocone_ι_app, CategoryTheory.Limits.IsColimit.comp_coconePointsIsoOfNatIso_inv, CategoryTheory.Limits.Cocone.op_π, CategoryTheory.Limits.KernelFork.map_condition, CategoryTheory.Limits.coconeOfConeUnop_ι, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.Limits.epi_of_isColimit_parallelFamily, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty, CategoryTheory.Limits.FintypeCat.jointly_surjective, CategoryTheory.Limits.Fork.op_ι_app_zero, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.Limits.coconeOfCoconeUncurry_ι_app, CategoryTheory.Limits.MonoCoprod.mono_binaryCofanSum_inr, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_none, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.WithInitial.mkCommaObject_left, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Limits.Trident.app_zero_assoc, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.Limits.PushoutCocone.mk_ι_app_left, CategoryTheory.mono_of_cofan_isVanKampen, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, CategoryTheory.Limits.combineCones_pt_map, CategoryTheory.Limits.Cofork.op_π_app_one, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv_comp_assoc, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm_assoc, CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp, CategoryTheory.Limits.IsLimit.map_π_assoc, CategoryTheory.ProdPreservesConnectedLimits.γ₁_app, CategoryTheory.Limits.ColimitPresentation.w, CategoryTheory.Limits.Cofork.IsColimit.π_desc, skyscraperPresheafCoconeOfSpecializes_ι_app, TopCat.isOpen_iff_of_isColimit_cofork, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.coherentTopology.isLocallySurjective_π_app_zero_of_isLocallySurjective_map, CategoryTheory.Limits.Types.Pushout.cocone_ι_app, TopCat.isQuotientMap_of_isColimit_cofork, CategoryTheory.Limits.KernelFork.map_ι, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.Over.forgetCocone_ι_app, CategoryTheory.Limits.hasLimit_const_of_isConnected, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Limits.ι_colimitConstInitial_hom, CategoryTheory.Limits.equalizer.fork_π_app_zero, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val_assoc, CategoryTheory.Limits.Cone.equivCostructuredArrow_unitIso, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, const_obj_obj, CategoryTheory.Limits.Cocone.toStructuredArrow_map, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Limits.Cone.w_apply, TopCat.isOpen_iff_of_isColimit, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Limits.Cone.overPost_π_app, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.Limits.Cone.toStructuredArrow_map, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hb, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, cocones_map_app, CategoryTheory.Limits.Multicoequalizer.multicofork_ι_app_right, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.limit.lift_π_app_assoc, CategoryTheory.Limits.Cone.w_assoc, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, CategoryTheory.cones_map_app_app, CategoryTheory.nat_trans_from_is_connected, CategoryTheory.WithTerminal.liftFromOver_map_app, AlgebraicGeometry.isAffineHom_π_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, LightProfinite.Extend.functor_obj, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, CategoryTheory.ShortComplex.exact_iff_of_forks, CategoryTheory.Limits.coequalizer.cofork_ι_app_one, CategoryTheory.Monad.ForgetCreatesLimits.liftedCone_π_app_f, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.GrothendieckTopology.liftToPlusObjLimitObj_fac, CategoryTheory.TransfiniteCompositionOfShape.map_incl, CategoryTheory.Limits.CompleteLattice.limitCone_cone_π_app, CategoryTheory.Limits.combineCocones_pt_map, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, CategoryTheory.Limits.Cotrident.ofπ_ι_app, IsEventuallyConstantTo.isIso_π_of_isLimit', LeftExtension.coconeAt_ι_app, CategoryTheory.Limits.coconeOfIsSplitEpi_ι_app, LightProfinite.instEpiAppOppositeNatπAsLimitCone, PresheafOfModules.colimitCocone_ι_app_app, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Limits.CokernelCofork.map_condition_assoc, CategoryTheory.SmallObject.coconeOfLE_ι_app, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_ι, CategoryTheory.Limits.BinaryFan.assocInv_snd, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.Comonad.ForgetCreatesLimits'.commuting, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.Limits.Multifork.ofPiFork_ι, CategoryTheory.Limits.Cofork.IsColimit.homIso_symm_apply, Initial.extendCone_obj_π_app, CategoryTheory.Limits.Fork.condition_assoc, CategoryTheory.Limits.Cofork.IsColimit.π_desc', CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom_comp, CategoryTheory.Under.lift_map, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, Final.extendCocone_map_hom, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_obj, CategoryTheory.Limits.isIso_colimit_cocone_parallelPair_of_self, CategoryTheory.Limits.coconeUnopOfCone_ι, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, CategoryTheory.cones_obj_obj, CategoryTheory.Limits.MonoCoprod.mono_binaryCofanSum_inl, CategoryTheory.Limits.BinaryFan.assocInv_fst, CategoryTheory.Limits.Fork.isoForkOfι_inv_hom, CategoryTheory.Limits.BinaryFan.π_app_left, IsEventuallyConstantFrom.isIso_ι_of_isColimit, AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.desc_fac, CategoryTheory.Limits.Cofork.ofπ_ι_app, equiv_inverse, CategoryTheory.Limits.Cofork.unop_ι, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, TopCat.Presheaf.SheafConditionEqualizerProducts.fork_π_app_walkingParallelPair_zero, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, CategoryTheory.Limits.IsLimit.homIso_hom, ModuleCat.FilteredColimits.ι_colimitDesc_assoc, CategoryTheory.liftedLimitMapsToOriginal_hom_π, CategoryTheory.Limits.PullbackCone.mk_π_app_left, CategoryTheory.constantPresheafAdj_counit_app_app, CategoryTheory.WithTerminal.commaFromOver_obj_left, CategoryTheory.Limits.CompleteLattice.colimitCocone_isColimit_desc, CategoryTheory.Limits.CompleteLattice.finiteColimitCocone_isColimit_desc, CategoryTheory.Limits.Cone.extensions_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Limits.coneUnopOfCocone_π, CategoryTheory.Limits.Cotrident.app_one_assoc, CategoryTheory.Limits.Multicofork.ofSigmaCofork_ι_app_left, CategoryTheory.Limits.hasColimit_const_of_isConnected, CategoryTheory.Limits.coconeOfCoconeCurry_ι_app, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, compConstIso_inv_app_app, CategoryTheory.constantSheafAdj_counit_app, Profinite.exists_locallyConstant_finite_nonempty, CategoryTheory.Limits.BinaryFan.assoc_fst, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_cone_π_app, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.FinitaryExtensive.isPullback_initial_to, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv_assoc, CategoryTheory.Limits.Types.Limit.lift_π_apply', AddCommGrpCat.binaryProductLimitCone_cone_π_app_right, CategoryTheory.PreOneHypercover.forkOfIsColimit_ι_map_inj, CategoryTheory.PreservesFiniteLimitsOfFlat.fac, CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone_ι_app_f, AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirectedHomBase_app, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, CategoryTheory.Limits.Cocones.precompose_map_hom, CategoryTheory.Limits.constCone_π, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, CategoryTheory.IsPullback.of_isLimit_cone, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Limits.limit.lift_π, CategoryTheory.Limits.Cofork.IsColimit.π_desc'_assoc, CategoryTheory.Limits.IsColimit.fac_assoc, AlgebraicGeometry.SheafedSpace.isColimit_exists_rep, CategoryTheory.Limits.pushoutCoconeOfRightIso_ι_app_right, CategoryTheory.Limits.wideEqualizer.trident_π_app_zero, CategoryTheory.Limits.BinaryFan.isLimit_iff_isIso_snd, CategoryTheory.TransfiniteCompositionOfShape.ici_incl, CategoryTheory.Limits.LimitPresentation.w_assoc, CategoryTheory.cocones_obj_obj, const_obj_map, CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.Limits.Cocone.equivStructuredArrow_functor, CategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff', Profinite.exists_locallyConstant_fin_two, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_ι, ModuleCat.HasLimit.productLimitCone_isLimit_lift, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_inv, CategoryTheory.WithTerminal.equivComma_unitIso_hom_app_app, TopCat.piFan_π_app, TopCat.coconeOfCoconeForget_ι_app, CategoryTheory.Comma.colimitAuxiliaryCocone_ι_app, CategoryTheory.Limits.Fan.mk_π_app, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂, CategoryTheory.Limits.Multifork.app_right_eq_ι_comp_fst, CategoryTheory.Sheaf.sheafifyCocone_ι_app_val, Profinite.Extend.functor_map, CategoryTheory.Limits.coneOfAdj_π, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Limits.isIso_limit_cone_parallelPair_of_self, CategoryTheory.Limits.Concrete.isColimit_rep_eq_of_exists, CategoryTheory.Limits.Cofork.app_one_eq_π, CategoryTheory.Limits.constCocone_ι, AlgebraicGeometry.Scheme.exists_isOpenCover_and_isAffine, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, instIsAccessibleObjConst, CategoryTheory.Limits.Cocone.underPost_pt, CategoryTheory.Limits.Cofork.op_ι, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CommRingCat.coproductCocone_ι, CategoryTheory.Limits.Cocone.extensions_app, CategoryTheory.Limits.ColimitPresentation.bind_ι_app, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Limits.Types.surjective_π_app_zero_of_surjective_map_aux, Fiber.fiberInclusionCompIsoConst_hom_app, CategoryTheory.Limits.Cones.postcompose_map_hom, AlgebraicGeometry.PresheafedSpace.colimitCocone_ι_app_c, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₂_assoc, CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial, CategoryTheory.Limits.Cotrident.IsColimit.homIso_apply_coe, equiv_counitIso, CategoryTheory.WithTerminal.equivComma_unitIso_inv_app_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, CategoryTheory.Limits.CoconeMorphism.map_w, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Limits.Fork.unop_π, CategoryTheory.Over.liftCocone_pt, Condensed.discrete_obj, TopCat.isTopologicalBasis_cofiltered_limit, CategoryTheory.Limits.constCocone_pt, CategoryTheory.Limits.instHasLimitObjFunctorConstTerminal, CategoryTheory.IsPullback.of_is_product, CategoryTheory.BinaryCofan.isPullback_initial_to_of_isVanKampen, CategoryTheory.Limits.colimit.ι_desc_app, CategoryTheory.Limits.IsLimit.fac, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.IsPushout.of_isColimit_cocone, CategoryTheory.IsGrothendieckAbelian.IsPresentable.surjectivity.epi_f, CategoryTheory.Limits.combineCones_π_app_app, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.Limits.isIso_limit_cocone_parallelPair_of_epi, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, costructuredArrowMapCocone_ι_app, SSet.range_eq_iSup_of_isColimit, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.Over.lift_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right, Profinite.exists_hom, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.Limits.ι_colimitConstInitial_hom_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, CategoryTheory.Limits.Fork.equalizer_ext, CategoryTheory.constantPresheafAdj_unit_app, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.mem_incl_app, CategoryTheory.Limits.MonoCoprod.binaryCofan_inr, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, CategoryTheory.Limits.Cone.op_ι, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Limits.epi_of_isColimit_cofork, structuredArrowMapCone_π_app, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.Limits.compYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.Limits.ColimitPresentation.self_ι, CategoryTheory.Comma.coneOfPreserves_π_app_left, CategoryTheory.Monad.ForgetCreatesColimits.newCocone_ι
constComp 📖CompOp
7 mathmath: CategoryTheory.constantCommuteCompose_hom_app_val, constComp_inv_app, CategoryTheory.Limits.ColimitPresentation.map_ι, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, CategoryTheory.Limits.LimitPresentation.map_π, constComp_hom_app, CategoryTheory.TransfiniteCompositionOfShape.map_incl
constCompWhiskeringLeftIso 📖CompOp
2 mathmath: constCompWhiskeringLeftIso_hom_app_app, constCompWhiskeringLeftIso_inv_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
compConstIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
const
whiskeringRight
CategoryTheory.Iso.hom
compConstIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
compConstIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
const
whiskeringRight
CategoryTheory.Iso.inv
compConstIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
constCompWhiskeringLeftIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
const
whiskeringLeft
CategoryTheory.Iso.hom
constCompWhiskeringLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
constCompWhiskeringLeftIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
const
comp
whiskeringLeft
CategoryTheory.Iso.inv
constCompWhiskeringLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
constComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
comp
obj
CategoryTheory.Functor
category
const
CategoryTheory.Iso.hom
constComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
constComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
const
comp
CategoryTheory.Iso.inv
constComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
const_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
map
CategoryTheory.Functor
category
const
const_obj_map 📖mathematicalmap
obj
CategoryTheory.Functor
category
const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
const_obj_obj 📖mathematicalobj
CategoryTheory.Functor
category
const
instFaithfulConstOfNonempty 📖mathematicalFaithful
CategoryTheory.Functor
category
const
CategoryTheory.NatTrans.congr_app

CategoryTheory.Functor.const

Definitions

NameCategoryTheorems
opObjOp 📖CompOp
2 mathmath: opObjOp_hom_app, opObjOp_inv_app
opObjUnop 📖CompOp
2 mathmath: opObjUnop_hom_app, opObjUnop_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
opObjOp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.op
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
opObjOp
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
opObjOp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.op
CategoryTheory.Iso.inv
opObjOp
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
opObjUnop_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
CategoryTheory.Functor.leftOp
CategoryTheory.Iso.hom
opObjUnop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
opObjUnop_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Opposite.unop
CategoryTheory.Iso.inv
opObjUnop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
unop_functor_op_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite.unop
CategoryTheory.Functor
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.op
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct

Functor

Definitions

NameCategoryTheorems
Const 📖CompOp
4 mathmath: instLawfulApplicativeConst, Const.lawfulFunctor, LawfulBitraversable.const, LawfulBifunctor.const

---

← Back to Index