Documentation Verification Report

Currying

📁 Source: Mathlib/CategoryTheory/Functor/Currying.lean

Statistics

MetricCount
DefinitionscompFlipUncurryIso, curry, curryObj, curryObjCompIso, curryObjProdComp, currying, curryingEquiv, curryingFlipEquiv, flipIsoCurrySwapUncurry, flipping, flippingEquiv, fullyFaithfulCurry, fullyFaithfulUncurry, uncurry, uncurryObjFlip, whiskeringRight₂
16
TheoremscompFlipUncurryIso_hom_app, compFlipUncurryIso_inv_app, comp_flip_uncurry_eq, curryObjCompIso_hom_app_app, curryObjCompIso_inv_app_app, curryObjProdComp_hom_app_app, curryObjProdComp_inv_app_app, curry_map_app_app, curry_obj_comp_flip, curry_obj_injective, curry_obj_map_app, curry_obj_obj_map, curry_obj_obj_obj, curry_obj_uncurry_obj, curryingEquiv_apply_map, curryingEquiv_apply_obj, curryingEquiv_symm_apply_map_app, curryingEquiv_symm_apply_obj_map, curryingEquiv_symm_apply_obj_obj, curryingFlipEquiv_apply_map, curryingFlipEquiv_apply_obj, curryingFlipEquiv_symm_apply_map_app, curryingFlipEquiv_symm_apply_obj_map, curryingFlipEquiv_symm_apply_obj_obj, currying_counitIso_hom_app_app, currying_counitIso_inv_app_app, currying_functor_map_app, currying_functor_obj_map, currying_functor_obj_obj, currying_inverse_map_app_app, currying_inverse_obj_map_app, currying_inverse_obj_obj_map, currying_inverse_obj_obj_obj, currying_unitIso_hom_app_app_app, currying_unitIso_inv_app_app_app, flipIsoCurrySwapUncurry_hom_app_app, flipIsoCurrySwapUncurry_inv_app_app, flip_flip, flip_injective, flippingEquiv_apply_map_app, flippingEquiv_apply_obj_map, flippingEquiv_apply_obj_obj, flippingEquiv_symm_apply_map_app, flippingEquiv_symm_apply_obj_map, flippingEquiv_symm_apply_obj_obj, flipping_counitIso_hom_app_app_app, flipping_counitIso_inv_app_app_app, flipping_functor_map_app_app, flipping_functor_obj_map_app, flipping_functor_obj_obj_map, flipping_functor_obj_obj_obj, flipping_inverse_map_app_app, flipping_inverse_obj_map_app, flipping_inverse_obj_obj_map, flipping_inverse_obj_obj_obj, flipping_unitIso_hom_app_app_app, flipping_unitIso_inv_app_app_app, instFaithfulProdCurry, instFaithfulProdUncurry, instFullProdCurry, instFullProdUncurry, uncurryObjFlip_hom_app, uncurryObjFlip_inv_app, uncurry_map_app, uncurry_obj_curry_obj, uncurry_obj_curry_obj_flip_flip, uncurry_obj_curry_obj_flip_flip', uncurry_obj_injective, uncurry_obj_map, uncurry_obj_obj, whiskeringRight₂_map_app_app_app, whiskeringRight₂_obj_map_app_app, whiskeringRight₂_obj_obj_map_app, whiskeringRight₂_obj_obj_obj_map, whiskeringRight₂_obj_obj_obj_obj
75
Total91

CategoryTheory.Functor

Definitions

NameCategoryTheorems
compFlipUncurryIso 📖CompOp
2 mathmath: compFlipUncurryIso_inv_app, compFlipUncurryIso_hom_app
curry 📖CompOp
58 mathmath: CategoryTheory.Limits.map_id_right_eq_curry_swap_map, CategoryTheory.Limits.colimitLimitToLimitColimit_isIso, curryObjCompIso_hom_app_app, curry_obj_obj_obj, CategoryTheory.Limits.coconeOfCoconeCurry_pt, CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_π_π_assoc, curry_obj_uncurry_obj, CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_hom, CategoryTheory.Limits.colimitIsoSwapCompColim_hom_app, currying_counitIso_hom_app_app, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_hom_assoc, CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_ι_ι_inv, instFaithfulProdCurry, curryObjProdComp_hom_app_app, uncurry_obj_curry_obj, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π, CategoryTheory.Limits.limitIsoSwapCompLim_hom_app, CategoryTheory.Limits.coneOfConeCurry_pt, currying_counitIso_inv_app_app, CategoryTheory.Limits.map_id_left_eq_curry_map, CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_inv_π_π, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_hom, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, CategoryTheory.Limits.coneOfConeCurry_π_app, CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_ι_inv_assoc, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac₂, CategoryTheory.Limits.colimitIsoSwapCompColim_inv_app, CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_fac₁, flipIsoCurrySwapUncurry_hom_app_app, whiskeringRight₂_map_app_app_app, CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_hom_π_π, curryObjCompIso_inv_app_app, currying_unitIso_inv_app_app_app, currying_unitIso_hom_app_app_app, CategoryTheory.Limits.limitIsoSwapCompLim_inv_app, curry_obj_obj_map, instFullProdCurry, CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_π, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_apply, CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_π_assoc, CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_π_π, curry_obj_map_app, uncurry_obj_curry_obj_flip_flip', CategoryTheory.Limits.colimitIsoColimitCurryCompColim_ι_ι_inv, curryObjProdComp_inv_app_app, flipIsoCurrySwapUncurry_inv_app_app, bifunctorComp₁₂Iso_inv_app_app_app, bifunctorComp₁₂Iso_hom_app_app_app, bifunctorComp₂₃Iso_hom_app_app_app, CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_assoc, curry_map_app_app, CategoryTheory.Limits.coconeOfCoconeCurry_ι_app, curry_obj_comp_flip, CategoryTheory.Limits.colimitLimitToLimitColimit_injective, bifunctorComp₂₃Iso_inv_app_app_app, CategoryTheory.Limits.colimitLimitToLimitColimit_surjective, uncurry_obj_curry_obj_flip_flip
curryObj 📖CompOp
4 mathmath: whiskeringRight₂_map_app_app_app, CategoryTheory.curryingIso_inv_toFunctor_map_app_app, curry_map_app_app, currying_inverse_map_app_app
curryObjCompIso 📖CompOp
2 mathmath: curryObjCompIso_hom_app_app, curryObjCompIso_inv_app_app
curryObjProdComp 📖CompOp
2 mathmath: curryObjProdComp_hom_app_app, curryObjProdComp_inv_app_app
currying 📖CompOp
12 mathmath: currying_inverse_obj_obj_obj, currying_counitIso_hom_app_app, currying_inverse_obj_obj_map, currying_counitIso_inv_app_app, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, currying_unitIso_inv_app_app_app, currying_unitIso_hom_app_app_app, currying_functor_obj_obj, currying_functor_obj_map, currying_functor_map_app, currying_inverse_map_app_app, currying_inverse_obj_map_app
curryingEquiv 📖CompOp
6 mathmath: curryingEquiv_symm_apply_obj_obj, curryingFlipEquiv_symm_apply_map_app, curryingEquiv_apply_obj, curryingEquiv_symm_apply_map_app, curryingEquiv_apply_map, curryingEquiv_symm_apply_obj_map
curryingFlipEquiv 📖CompOp
5 mathmath: curryingFlipEquiv_symm_apply_map_app, curryingFlipEquiv_apply_obj, curryingFlipEquiv_symm_apply_obj_map, curryingFlipEquiv_apply_map, curryingFlipEquiv_symm_apply_obj_obj
flipIsoCurrySwapUncurry 📖CompOp
6 mathmath: CategoryTheory.Limits.colimitIsoSwapCompColim_hom_app, CategoryTheory.Limits.limitIsoSwapCompLim_hom_app, CategoryTheory.Limits.colimitIsoSwapCompColim_inv_app, flipIsoCurrySwapUncurry_hom_app_app, CategoryTheory.Limits.limitIsoSwapCompLim_inv_app, flipIsoCurrySwapUncurry_inv_app_app
flipping 📖CompOp
12 mathmath: flipping_functor_map_app_app, flipping_inverse_obj_obj_map, flipping_counitIso_inv_app_app_app, flipping_counitIso_hom_app_app_app, flipping_unitIso_hom_app_app_app, flipping_functor_obj_map_app, flipping_unitIso_inv_app_app_app, flipping_inverse_obj_map_app, flipping_functor_obj_obj_obj, flipping_inverse_map_app_app, flipping_functor_obj_obj_map, flipping_inverse_obj_obj_obj
flippingEquiv 📖CompOp
6 mathmath: flippingEquiv_symm_apply_map_app, flippingEquiv_symm_apply_obj_obj, flippingEquiv_symm_apply_obj_map, flippingEquiv_apply_obj_map, flippingEquiv_apply_map_app, flippingEquiv_apply_obj_obj
fullyFaithfulCurry 📖CompOp—
fullyFaithfulUncurry 📖CompOp—
uncurry 📖CompOp
71 mathmath: whiskeringRight₂_obj_obj_map_app, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_ι_inv, uncurryObjFlip_hom_app, CategoryTheory.MonoidalCategory.externalProductBifunctor_map_app, curry_obj_uncurry_obj, CategoryTheory.Limits.colimitIsoSwapCompColim_hom_app, currying_counitIso_hom_app_app, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, comp_flip_uncurry_eq, uncurry_obj_curry_obj, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, CategoryTheory.Limits.limitIsoSwapCompLim_hom_app, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_hom_assoc, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_hom, compFlipUncurryIso_inv_app, currying_counitIso_inv_app_app, uncurry_map_app, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, instFaithfulProdUncurry, CategoryTheory.Limits.colimitIsoSwapCompColim_inv_app, uncurry_obj_obj, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, uncurryObjFlip_inv_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_π, mapCone₂_pt, CategoryTheory.Limits.PreservesLimit₂.nonempty_isLimit_mapCone₂, flipIsoCurrySwapUncurry_hom_app_app, mapCone₂_π_app, instFullProdUncurry, whiskeringRight₂_map_app_app_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Limits.coneOfConeUncurry_π_app, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π, currying_unitIso_inv_app_app_app, currying_unitIso_hom_app_app_app, mapCocone₂_pt, uncurry_obj_map, closedIhom_map_app, mapCocone₂_ι_app, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_π_π_assoc, CategoryTheory.Limits.limitIsoSwapCompLim_inv_app, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, CategoryTheory.Limits.coconeOfCoconeUncurry_pt, CategoryTheory.Limits.coconeOfCoconeUncurry_ι_app, uncurry_obj_curry_obj_flip_flip', CategoryTheory.Limits.coneOfConeUncurry_pt, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_π_π, flipIsoCurrySwapUncurry_inv_app_app, bifunctorComp₁₂Iso_inv_app_app_app, bifunctorComp₁₂Iso_hom_app_app_app, bifunctorComp₂₃Iso_hom_app_app_app, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv_assoc, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom, CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂, CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_π_assoc, CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂, whiskeringRight₂_obj_map_app_app, compFlipUncurryIso_hom_app, CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_ι_ι_inv_assoc, bifunctorComp₂₃Iso_inv_app_app_app, CategoryTheory.Limits.PreservesColimit₂.nonempty_isColimit_mapCocone₂, uncurry_obj_curry_obj_flip_flip
uncurryObjFlip 📖CompOp
2 mathmath: uncurryObjFlip_hom_app, uncurryObjFlip_inv_app
whiskeringRight₂ 📖CompOp
5 mathmath: whiskeringRight₂_obj_obj_map_app, whiskeringRight₂_obj_obj_obj_map, whiskeringRight₂_obj_obj_obj_obj, whiskeringRight₂_map_app_app_app, whiskeringRight₂_obj_map_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
compFlipUncurryIso_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
flip
comp
CategoryTheory.Iso.hom
prod
id
compFlipUncurryIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
compFlipUncurryIso_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
flip
comp
CategoryTheory.Iso.inv
prod
id
compFlipUncurryIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
comp_flip_uncurry_eq 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
flip
comp
prod
id
——
curryObjCompIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
flip
CategoryTheory.prod'
curry
comp
CategoryTheory.Iso.hom
whiskeringRight
curryObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
curryObjCompIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
flip
CategoryTheory.prod'
curry
comp
CategoryTheory.Iso.inv
whiskeringRight
curryObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
curryObjProdComp_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
CategoryTheory.prod'
curry
comp
prod
whiskeringLeft
CategoryTheory.Iso.hom
curryObjProdComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
curryObjProdComp_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
CategoryTheory.prod'
curry
whiskeringLeft
prod
CategoryTheory.Iso.inv
curryObjProdComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
curry_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
curryObj
map
CategoryTheory.prod'
curry
——
curry_obj_comp_flip 📖mathematical—flip
obj
CategoryTheory.Functor
CategoryTheory.prod'
category
curry
comp
whiskeringRight
——
curry_obj_injective 📖—obj
CategoryTheory.Functor
CategoryTheory.prod'
category
curry
——uncurry_obj_curry_obj
curry_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.prod'
map
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
category
curry
——
curry_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
CategoryTheory.prod'
curry
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
curry_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
curry
——
curry_obj_uncurry_obj 📖mathematical—obj
CategoryTheory.Functor
CategoryTheory.prod'
category
curry
uncurry
—ext
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.ext'
CategoryTheory.eqToHom_app
curryingEquiv_apply_map 📖mathematical—map
CategoryTheory.prod'
DFunLike.coe
Equiv
CategoryTheory.Functor
category
EquivLike.toFunLike
Equiv.instEquivLike
curryingEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
——
curryingEquiv_apply_obj 📖mathematical—obj
CategoryTheory.prod'
DFunLike.coe
Equiv
CategoryTheory.Functor
category
EquivLike.toFunLike
Equiv.instEquivLike
curryingEquiv
——
curryingEquiv_symm_apply_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.prod'
map
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
category
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingEquiv
——
curryingEquiv_symm_apply_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
CategoryTheory.prod'
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingEquiv
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
curryingEquiv_symm_apply_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
CategoryTheory.prod'
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingEquiv
——
curryingFlipEquiv_apply_map 📖mathematical—map
CategoryTheory.prod'
DFunLike.coe
Equiv
CategoryTheory.Functor
category
EquivLike.toFunLike
Equiv.instEquivLike
curryingFlipEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
—CategoryTheory.NatTrans.naturality
curryingFlipEquiv_apply_obj 📖mathematical—obj
CategoryTheory.prod'
DFunLike.coe
Equiv
CategoryTheory.Functor
category
EquivLike.toFunLike
Equiv.instEquivLike
curryingFlipEquiv
——
curryingFlipEquiv_symm_apply_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
CategoryTheory.prod'
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingEquiv
map
curryingFlipEquiv
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
curryingFlipEquiv_symm_apply_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
CategoryTheory.prod'
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingFlipEquiv
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
curryingFlipEquiv_symm_apply_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
CategoryTheory.prod'
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryingFlipEquiv
——
currying_counitIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
comp
curry
uncurry
id
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
currying
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
currying_counitIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
id
comp
curry
uncurry
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
currying
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
currying_functor_map_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Equivalence.functor
currying
——
currying_functor_obj_map 📖mathematical—map
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
currying
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
——
currying_functor_obj_obj 📖mathematical—obj
CategoryTheory.prod'
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
currying
——
currying_inverse_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
curryObj
map
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
currying
——
currying_inverse_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.prod'
map
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
category
CategoryTheory.Equivalence.inverse
currying
——
currying_inverse_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
currying
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
currying_inverse_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
currying
——
currying_unitIso_hom_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
id
comp
CategoryTheory.prod'
uncurry
curry
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
currying
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
currying_unitIso_inv_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
CategoryTheory.prod'
uncurry
curry
id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
currying
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipIsoCurrySwapUncurry_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
flip
CategoryTheory.prod'
curry
comp
CategoryTheory.Prod.swap
uncurry
CategoryTheory.Iso.hom
flipIsoCurrySwapUncurry
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipIsoCurrySwapUncurry_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
CategoryTheory.prod'
curry
comp
CategoryTheory.Prod.swap
uncurry
flip
CategoryTheory.Iso.inv
flipIsoCurrySwapUncurry
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flip_flip 📖mathematical—flip——
flip_injective 📖—flip——flip_flip
flippingEquiv_apply_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
map
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
flippingEquiv
——
flippingEquiv_apply_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
flippingEquiv
CategoryTheory.NatTrans.app
——
flippingEquiv_apply_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
flippingEquiv
——
flippingEquiv_symm_apply_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
map
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
flippingEquiv
——
flippingEquiv_symm_apply_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
flippingEquiv
CategoryTheory.NatTrans.app
——
flippingEquiv_symm_apply_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
flippingEquiv
——
flipping_counitIso_hom_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
CategoryTheory.flipFunctor
id
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
flipping
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipping_counitIso_inv_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
id
comp
CategoryTheory.flipFunctor
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
flipping
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipping_functor_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
flip
map
CategoryTheory.Equivalence.functor
flipping
——
flipping_functor_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
map
CategoryTheory.Equivalence.functor
flipping
——
flipping_functor_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
flipping
CategoryTheory.NatTrans.app
——
flipping_functor_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.functor
flipping
——
flipping_inverse_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
flip
map
CategoryTheory.Equivalence.inverse
flipping
——
flipping_inverse_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
map
CategoryTheory.Equivalence.inverse
flipping
——
flipping_inverse_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.inverse
flipping
CategoryTheory.NatTrans.app
——
flipping_inverse_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.Equivalence.inverse
flipping
——
flipping_unitIso_hom_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
id
comp
CategoryTheory.flipFunctor
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
flipping
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipping_unitIso_inv_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
CategoryTheory.flipFunctor
id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
flipping
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
instFaithfulProdCurry 📖mathematical—Faithful
CategoryTheory.Functor
CategoryTheory.prod'
category
curry
—FullyFaithful.faithful
instFaithfulProdUncurry 📖mathematical—Faithful
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
—FullyFaithful.faithful
instFullProdCurry 📖mathematical—Full
CategoryTheory.Functor
CategoryTheory.prod'
category
curry
—FullyFaithful.full
instFullProdUncurry 📖mathematical—Full
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
—FullyFaithful.full
uncurryObjFlip_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
flip
comp
CategoryTheory.Prod.swap
CategoryTheory.Iso.hom
uncurryObjFlip
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
uncurryObjFlip_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
comp
CategoryTheory.Prod.swap
obj
CategoryTheory.Functor
category
uncurry
flip
CategoryTheory.Iso.inv
uncurryObjFlip
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
uncurry_map_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
uncurry
——
uncurry_obj_curry_obj 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
curry
—ext
map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
uncurry_obj_curry_obj_flip_flip 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
flip
comp
curry
prod
—ext
map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
uncurry_obj_curry_obj_flip_flip' 📖mathematical—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
comp
flip
curry
prod
—ext
map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
uncurry_obj_injective 📖—obj
CategoryTheory.Functor
category
CategoryTheory.prod'
uncurry
——curry_obj_uncurry_obj
uncurry_obj_map 📖mathematical—map
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
uncurry
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
——
uncurry_obj_obj 📖mathematical—obj
CategoryTheory.prod'
CategoryTheory.Functor
category
uncurry
——
whiskeringRight₂_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
CategoryTheory.prod'
category
whiskeringLeft
CategoryTheory.prodFunctorToFunctorProd
whiskeringRight
uncurry
curryObj
comp
curry
map
whiskeringRight₂
——
whiskeringRight₂_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
CategoryTheory.prod'
category
whiskeringLeft
CategoryTheory.prodFunctorToFunctorProd
whiskeringRight
uncurry
map
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
whiskeringRight₂
—map_id
CategoryTheory.Category.comp_id
whiskeringRight₂_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
CategoryTheory.prod'
category
whiskeringLeft
CategoryTheory.prodFunctorToFunctorProd
whiskeringRight
uncurry
map
whiskeringRight₂
—map_id
CategoryTheory.Category.id_comp
whiskeringRight₂_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
whiskeringRight₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
——
whiskeringRight₂_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringRight₂
——

---

← Back to Index