đ Source: Mathlib/CategoryTheory/Functor/Currying.lean
compFlipUncurryIso
curry
curryObj
curryObjCompIso
curryObjProdComp
currying
curryingEquiv
curryingFlipEquiv
flipIsoCurrySwapUncurry
flipping
flippingEquiv
fullyFaithfulCurry
fullyFaithfulUncurry
uncurry
uncurryObjFlip
whiskeringRightâ
compFlipUncurryIso_hom_app
compFlipUncurryIso_inv_app
comp_flip_uncurry_eq
curryObjCompIso_hom_app_app
curryObjCompIso_inv_app_app
curryObjProdComp_hom_app_app
curryObjProdComp_inv_app_app
curry_map_app_app
curry_obj_comp_flip
curry_obj_injective
curry_obj_map_app
curry_obj_obj_map
curry_obj_obj_obj
curry_obj_uncurry_obj
curryingEquiv_apply_map
curryingEquiv_apply_obj
curryingEquiv_symm_apply_map_app
curryingEquiv_symm_apply_obj_map
curryingEquiv_symm_apply_obj_obj
curryingFlipEquiv_apply_map
curryingFlipEquiv_apply_obj
curryingFlipEquiv_symm_apply_map_app
curryingFlipEquiv_symm_apply_obj_map
curryingFlipEquiv_symm_apply_obj_obj
currying_counitIso_hom_app_app
currying_counitIso_inv_app_app
currying_functor_map_app
currying_functor_obj_map
currying_functor_obj_obj
currying_inverse_map_app_app
currying_inverse_obj_map_app
currying_inverse_obj_obj_map
currying_inverse_obj_obj_obj
currying_unitIso_hom_app_app_app
currying_unitIso_inv_app_app_app
flipIsoCurrySwapUncurry_hom_app_app
flipIsoCurrySwapUncurry_inv_app_app
flip_flip
flip_injective
flippingEquiv_apply_map_app
flippingEquiv_apply_obj_map
flippingEquiv_apply_obj_obj
flippingEquiv_symm_apply_map_app
flippingEquiv_symm_apply_obj_map
flippingEquiv_symm_apply_obj_obj
flipping_counitIso_hom_app_app_app
flipping_counitIso_inv_app_app_app
flipping_functor_map_app_app
flipping_functor_obj_map_app
flipping_functor_obj_obj_map
flipping_functor_obj_obj_obj
flipping_inverse_map_app_app
flipping_inverse_obj_map_app
flipping_inverse_obj_obj_map
flipping_inverse_obj_obj_obj
flipping_unitIso_hom_app_app_app
flipping_unitIso_inv_app_app_app
instFaithfulProdCurry
instFaithfulProdUncurry
instFullProdCurry
instFullProdUncurry
uncurryObjFlip_hom_app
uncurryObjFlip_inv_app
uncurry_map_app
uncurry_obj_curry_obj
uncurry_obj_curry_obj_flip_flip
uncurry_obj_curry_obj_flip_flip'
uncurry_obj_injective
uncurry_obj_map
uncurry_obj_obj
whiskeringRightâ_map_app_app_app
whiskeringRightâ_obj_map_app_app
whiskeringRightâ_obj_obj_map_app
whiskeringRightâ_obj_obj_obj_map
whiskeringRightâ_obj_obj_obj_obj
CategoryTheory.Limits.map_id_right_eq_curry_swap_map
CategoryTheory.Limits.colimitLimitToLimitColimit_isIso
CategoryTheory.Limits.coconeOfCoconeCurry_pt
CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_Ď_Ď_assoc
CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_Κ_Κ_hom
CategoryTheory.Limits.colimitIsoSwapCompColim_hom_app
CategoryTheory.IsSifted.factorization_prodComparison_colim
CategoryTheory.Limits.colimitIsoColimitCurryCompColim_Κ_hom_assoc
CategoryTheory.Limits.colimitCurrySwapCompColimIsoColimitCurryCompColim_Κ_Κ_inv
CategoryTheory.Limits.Κ_colimitLimitToLimitColimit_Ď
CategoryTheory.Limits.limitIsoSwapCompLim_hom_app
CategoryTheory.Limits.coneOfConeCurry_pt
CategoryTheory.Limits.map_id_left_eq_curry_map
CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_inv_Ď_Ď
CategoryTheory.Limits.colimitIsoColimitCurryCompColim_Κ_hom
CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom
CategoryTheory.Limits.coneOfConeCurry_Ď_app
CategoryTheory.Limits.colimitIsoColimitCurryCompColim_Κ_Κ_inv_assoc
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_facâ
CategoryTheory.Limits.colimitIsoSwapCompColim_inv_app
CategoryTheory.Localization.StrictUniversalPropertyFixedTarget.prod_facâ
CategoryTheory.Limits.limitCurrySwapCompLimIsoLimitCurryCompLim_hom_Ď_Ď
CategoryTheory.Limits.limitIsoSwapCompLim_inv_app
CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_Ď
CategoryTheory.Limits.Κ_colimitLimitToLimitColimit_Ď_apply
CategoryTheory.Limits.limitIsoLimitCurryCompLim_inv_Ď_assoc
CategoryTheory.Limits.limitIsoLimitCurryCompLim_hom_Ď_Ď
CategoryTheory.Limits.colimitIsoColimitCurryCompColim_Κ_Κ_inv
bifunctorCompââIso_inv_app_app_app
bifunctorCompââIso_hom_app_app_app
bifunctorCompââIso_hom_app_app_app
CategoryTheory.Limits.Κ_colimitLimitToLimitColimit_Ď_assoc
CategoryTheory.Limits.coconeOfCoconeCurry_Κ_app
CategoryTheory.Limits.colimitLimitToLimitColimit_injective
bifunctorCompââIso_inv_app_app_app
CategoryTheory.Limits.colimitLimitToLimitColimit_surjective
CategoryTheory.curryingIso_inv_toFunctor_map_app_app
CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_Κ_Κ_inv
CategoryTheory.MonoidalCategory.externalProductBifunctor_map_app
CategoryTheory.Limits.PreservesColimitâ.map_Κ_comp_isoColimitUncurryWhiskeringLeftâ_inv_assoc
CategoryTheory.Limits.PreservesLimitâ.isoObjConePointsOfIsColimit_inv_comp_map_Ď
CategoryTheory.Limits.PreservesColimitâ.map_Κ_comp_isoColimitUncurryWhiskeringLeftâ_inv
CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_Κ_hom_assoc
CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_Κ_hom
CategoryTheory.Limits.PreservesColimitâ.map_Κ_comp_isoObjConePointsOfIsColimit_hom
CategoryTheory.Limits.PreservesLimitâ.isoObjConePointsOfIsLimit_hom_comp_Ď
CategoryTheory.Limits.PreservesColimitâ.map_Κ_comp_isoObjConePointsOfIsColimit_hom_assoc
CategoryTheory.Limits.PreservesLimitâ.isoObjConePointsOfIsColimit_inv_comp_map_Ď_assoc
CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_Ď
mapConeâ_pt
CategoryTheory.Limits.PreservesLimitâ.nonempty_isLimit_mapConeâ
mapConeâ_Ď_app
CategoryTheory.Limits.PreservesLimitâ.isoObjConePointsOfIsLimit_hom_comp_Ď_assoc
CategoryTheory.Limits.coneOfConeUncurry_Ď_app
CategoryTheory.Limits.PreservesLimitâ.isoLimitUncurryWhiskeringLeftâ_inv_comp_Ď
mapCoconeâ_pt
closedIhom_map_app
mapCoconeâ_Κ_app
CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_Ď_Ď_assoc
CategoryTheory.Limits.PreservesLimitâ.isoLimitUncurryWhiskeringLeftâ_inv_comp_Ď_assoc
CategoryTheory.Limits.PreservesColimitâ.Κ_comp_isoObjConePointsOfIsColimit_inv
CategoryTheory.Limits.PreservesLimitâ.isoLimitUncurryWhiskeringLeftâ_hom_comp_map_Ď
CategoryTheory.Limits.PreservesLimitâ.isoLimitUncurryWhiskeringLeftâ_hom_comp_map_Ď_assoc
CategoryTheory.Limits.PreservesColimitâ.Κ_comp_isoColimitUncurryWhiskeringLeftâ_hom_assoc
CategoryTheory.Limits.coconeOfCoconeUncurry_pt
CategoryTheory.Limits.coconeOfCoconeUncurry_Κ_app
CategoryTheory.Limits.coneOfConeUncurry_pt
CategoryTheory.Limits.limitUncurryIsoLimitCompLim_hom_Ď_Ď
CategoryTheory.Limits.PreservesColimitâ.Κ_comp_isoObjConePointsOfIsColimit_inv_assoc
CategoryTheory.Limits.PreservesColimitâ.Κ_comp_isoColimitUncurryWhiskeringLeftâ_hom
CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeftâOfPreservesLimitâ
CategoryTheory.Limits.limitUncurryIsoLimitCompLim_inv_Ď_assoc
CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeftâOfPreservesColimitâ
CategoryTheory.Limits.colimitUncurryIsoColimitCompColim_Κ_Κ_inv_assoc
CategoryTheory.Limits.PreservesColimitâ.nonempty_isColimit_mapCoconeâ
CategoryTheory.NatTrans.app
CategoryTheory.prod'
obj
CategoryTheory.Functor
category
flip
comp
CategoryTheory.Iso.hom
prod
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
whiskeringRight
whiskeringLeft
map
CategoryTheory.Prod.mkHom
ext
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.ext'
CategoryTheory.eqToHom_app
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Equiv.symm
CategoryTheory.NatTrans.naturality
CategoryTheory.Equivalence.counitIso
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.unitIso
CategoryTheory.Prod.swap
CategoryTheory.flipFunctor
Faithful
FullyFaithful.faithful
Full
FullyFaithful.full
map_comp
CategoryTheory.prodFunctorToFunctorProd
---
â Back to Index