Documentation Verification Report

LeftDerived

πŸ“ Source: Mathlib/CategoryTheory/Functor/Derived/LeftDerived.lean

Statistics

MetricCount
DefinitionsHasLeftDerivedFunctor, IsLeftDerivedFunctor, leftDerivedLift, leftDerivedNatIso, leftDerivedNatTrans, leftDerivedUnique, totalLeftDerived, totalLeftDerivedCounit
8
TheoremshasRightKanExtension, hasRightKanExtension', mk', isRightKanExtension, hasLeftDerivedFunctor_iff, hasLeftDerivedFunctor_iff_of_iso, instIsLeftDerivedFunctorTotalLeftDerivedTotalLeftDerivedCounit, isLeftDerivedFunctor_iff_isIso_leftDerivedLift, isLeftDerivedFunctor_iff_isRightKanExtension, isLeftDerivedFunctor_iff_of_iso, leftDerivedNatIso_hom, leftDerivedNatIso_inv, leftDerivedNatTrans_app, leftDerivedNatTrans_app_assoc, leftDerivedNatTrans_comp, leftDerivedNatTrans_comp_assoc, leftDerivedNatTrans_fac, leftDerivedNatTrans_fac_assoc, leftDerivedNatTrans_id, leftDerived_ext, leftDerived_fac, leftDerived_fac_app, leftDerived_fac_app_assoc, leftDerived_fac_assoc
24
Total32

CategoryTheory.Functor

Definitions

NameCategoryTheorems
HasLeftDerivedFunctor πŸ“–CompData
4 mathmath: hasLeftDerivedFunctor_iff, hasLeftDerivedFunctor_of_hasPointwiseLeftDerivedFunctor, hasLeftDerivedFunctor_iff_of_iso, HasLeftDerivedFunctor.mk'
IsLeftDerivedFunctor πŸ“–CompData
7 mathmath: isLeftDerivedFunctor_iff_isRightKanExtension, isLeftDerivedFunctor_iff_of_inverts, isLeftDerivedFunctor_of_inverts, instIsLeftDerivedFunctorLiftHomFac, isLeftDerivedFunctor_iff_of_iso, instIsLeftDerivedFunctorTotalLeftDerivedTotalLeftDerivedCounit, isLeftDerivedFunctor_iff_isIso_leftDerivedLift
leftDerivedLift πŸ“–CompOp
5 mathmath: leftDerived_fac_app, leftDerived_fac_assoc, leftDerived_fac, leftDerived_fac_app_assoc, isLeftDerivedFunctor_iff_isIso_leftDerivedLift
leftDerivedNatIso πŸ“–CompOp
2 mathmath: leftDerivedNatIso_inv, leftDerivedNatIso_hom
leftDerivedNatTrans πŸ“–CompOp
9 mathmath: leftDerivedNatTrans_fac_assoc, leftDerivedNatIso_inv, leftDerivedNatTrans_comp_assoc, leftDerivedNatTrans_comp, leftDerivedNatTrans_app_assoc, leftDerivedNatIso_hom, leftDerivedNatTrans_app, leftDerivedNatTrans_id, leftDerivedNatTrans_fac
leftDerivedUnique πŸ“–CompOpβ€”
totalLeftDerived πŸ“–CompOp
1 mathmath: instIsLeftDerivedFunctorTotalLeftDerivedTotalLeftDerivedCounit
totalLeftDerivedCounit πŸ“–CompOp
1 mathmath: instIsLeftDerivedFunctorTotalLeftDerivedTotalLeftDerivedCounit

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftDerivedFunctor_iff πŸ“–mathematicalβ€”HasLeftDerivedFunctor
HasRightKanExtension
β€”HasLeftDerivedFunctor.hasRightKanExtension'
hasRightExtension_iff_postcomp₁
q_isLocalization
CategoryTheory.Equivalence.isEquivalence_functor
hasLeftDerivedFunctor_iff_of_iso πŸ“–mathematicalβ€”HasLeftDerivedFunctorβ€”hasLeftDerivedFunctor_iff
q_isLocalization
hasRightExtension_iff_of_isoβ‚‚
instIsLeftDerivedFunctorTotalLeftDerivedTotalLeftDerivedCounit πŸ“–mathematicalβ€”IsLeftDerivedFunctor
totalLeftDerived
totalLeftDerivedCounit
β€”HasLeftDerivedFunctor.hasRightKanExtension
instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit
isLeftDerivedFunctor_iff_isIso_leftDerivedLift πŸ“–mathematicalβ€”IsLeftDerivedFunctor
CategoryTheory.IsIso
CategoryTheory.Functor
category
leftDerivedLift
β€”isLeftDerivedFunctor_iff_isRightKanExtension
IsLeftDerivedFunctor.isRightKanExtension
isRightKanExtension_iff_isIso
leftDerived_fac
isLeftDerivedFunctor_iff_isRightKanExtension πŸ“–mathematicalβ€”IsLeftDerivedFunctor
IsRightKanExtension
β€”IsLeftDerivedFunctor.isRightKanExtension
isLeftDerivedFunctor_iff_of_iso πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsLeftDerivedFunctorβ€”isRightKanExtension_iff_of_iso
leftDerivedNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftDerivedNatIso
leftDerivedNatTrans
β€”β€”
leftDerivedNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftDerivedNatIso
leftDerivedNatTrans
β€”β€”
leftDerivedNatTrans_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
leftDerivedNatTrans
comp
β€”leftDerived_fac_app
leftDerivedNatTrans_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
leftDerivedNatTrans
comp
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedNatTrans_app
leftDerivedNatTrans_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerivedNatTrans
β€”leftDerived_ext
CategoryTheory.Category.assoc
leftDerivedNatTrans_fac
leftDerivedNatTrans_fac_assoc
leftDerivedNatTrans_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
leftDerivedNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedNatTrans_comp
leftDerivedNatTrans_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
leftDerivedNatTrans
β€”leftDerived_fac
leftDerivedNatTrans_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
leftDerivedNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerivedNatTrans_fac
leftDerivedNatTrans_id πŸ“–mathematicalβ€”leftDerivedNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
β€”leftDerived_ext
leftDerivedNatTrans_fac
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftDerived_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
β€”β€”IsLeftDerivedFunctor.isRightKanExtension
hom_ext_of_isRightKanExtension
leftDerived_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
leftDerivedLift
β€”IsLeftDerivedFunctor.isRightKanExtension
liftOfIsRightKanExtension_fac
leftDerived_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
leftDerivedLift
comp
β€”IsLeftDerivedFunctor.isRightKanExtension
liftOfIsRightKanExtension_fac_app
leftDerived_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
leftDerivedLift
comp
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerived_fac_app
leftDerived_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
leftDerivedLift
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftDerived_fac

CategoryTheory.Functor.HasLeftDerivedFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
hasRightKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.HasRightKanExtensionβ€”CategoryTheory.Functor.hasLeftDerivedFunctor_iff
hasRightKanExtension' πŸ“–mathematicalβ€”CategoryTheory.Functor.HasRightKanExtension
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
β€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.HasLeftDerivedFunctorβ€”CategoryTheory.Functor.IsLeftDerivedFunctor.isRightKanExtension
CategoryTheory.Functor.hasLeftDerivedFunctor_iff

CategoryTheory.Functor.IsLeftDerivedFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
isRightKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightKanExtensionβ€”β€”

---

← Back to Index