Documentation Verification Report

RightDerived

πŸ“ Source: Mathlib/CategoryTheory/Functor/Derived/RightDerived.lean

Statistics

MetricCount
DefinitionsHasRightDerivedFunctor, IsRightDerivedFunctor, rightDerivedDesc, rightDerivedNatIso, rightDerivedNatTrans, rightDerivedUnique, totalRightDerived, totalRightDerivedUnit
8
TheoremshasLeftKanExtension, hasLeftKanExtension', mk', isLeftKanExtension, hasRightDerivedFunctor_iff, hasRightDerivedFunctor_iff_of_iso, instIsRightDerivedFunctorTotalRightDerivedTotalRightDerivedUnit, isRightDerivedFunctor_iff_isIso_rightDerivedDesc, isRightDerivedFunctor_iff_isLeftKanExtension, isRightDerivedFunctor_iff_of_iso, rightDerivedNatIso_hom, rightDerivedNatIso_inv, rightDerivedNatTrans_app, rightDerivedNatTrans_app_assoc, rightDerivedNatTrans_comp, rightDerivedNatTrans_comp_assoc, rightDerivedNatTrans_fac, rightDerivedNatTrans_fac_assoc, rightDerivedNatTrans_id, rightDerived_ext, rightDerived_fac, rightDerived_fac_app, rightDerived_fac_app_assoc, rightDerived_fac_assoc
24
Total32

CategoryTheory.Functor

Definitions

NameCategoryTheorems
HasRightDerivedFunctor πŸ“–CompData
4 mathmath: hasRightDerivedFunctor_iff, HasRightDerivedFunctor.mk', hasRightDerivedFunctor_iff_of_iso, hasRightDerivedFunctor_of_hasPointwiseRightDerivedFunctor
IsRightDerivedFunctor πŸ“–CompData
9 mathmath: isRightDerivedFunctor_iff_isLeftKanExtension, instIsRightDerivedFunctorLiftInvFac, isRightDerivedFunctor_iff_of_inverts, instIsRightDerivedFunctorTotalRightDerivedTotalRightDerivedUnit, isRightDerivedFunctor_iff_of_iso, CategoryTheory.LocalizerMorphism.Derives.isRightDerivedFunctor_of_isIso, isRightDerivedFunctor_iff_isIso_rightDerivedDesc, isRightDerivedFunctor_of_inverts, CategoryTheory.LocalizerMorphism.Derives.isRightDerivedFunctor_iff_isIso
rightDerivedDesc πŸ“–CompOp
5 mathmath: rightDerived_fac_app, rightDerived_fac_assoc, rightDerived_fac_app_assoc, isRightDerivedFunctor_iff_isIso_rightDerivedDesc, rightDerived_fac
rightDerivedNatIso πŸ“–CompOp
2 mathmath: rightDerivedNatIso_inv, rightDerivedNatIso_hom
rightDerivedNatTrans πŸ“–CompOp
9 mathmath: rightDerivedNatTrans_id, rightDerivedNatIso_inv, rightDerivedNatTrans_comp, rightDerivedNatIso_hom, rightDerivedNatTrans_app_assoc, rightDerivedNatTrans_fac, rightDerivedNatTrans_comp_assoc, rightDerivedNatTrans_app, rightDerivedNatTrans_fac_assoc
rightDerivedUnique πŸ“–CompOpβ€”
totalRightDerived πŸ“–CompOp
1 mathmath: instIsRightDerivedFunctorTotalRightDerivedTotalRightDerivedUnit
totalRightDerivedUnit πŸ“–CompOp
1 mathmath: instIsRightDerivedFunctorTotalRightDerivedTotalRightDerivedUnit

Theorems

NameKindAssumesProvesValidatesDepends On
hasRightDerivedFunctor_iff πŸ“–mathematicalβ€”HasRightDerivedFunctor
HasLeftKanExtension
β€”HasRightDerivedFunctor.hasLeftKanExtension'
hasLeftExtension_iff_postcomp₁
q_isLocalization
CategoryTheory.Equivalence.isEquivalence_functor
hasRightDerivedFunctor_iff_of_iso πŸ“–mathematicalβ€”HasRightDerivedFunctorβ€”hasRightDerivedFunctor_iff
q_isLocalization
hasLeftExtension_iff_of_isoβ‚‚
instIsRightDerivedFunctorTotalRightDerivedTotalRightDerivedUnit πŸ“–mathematicalβ€”IsRightDerivedFunctor
totalRightDerived
totalRightDerivedUnit
β€”HasRightDerivedFunctor.hasLeftKanExtension
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
isRightDerivedFunctor_iff_isIso_rightDerivedDesc πŸ“–mathematicalβ€”IsRightDerivedFunctor
CategoryTheory.IsIso
CategoryTheory.Functor
category
rightDerivedDesc
β€”isRightDerivedFunctor_iff_isLeftKanExtension
IsRightDerivedFunctor.isLeftKanExtension
isLeftKanExtension_iff_isIso
rightDerived_fac
isRightDerivedFunctor_iff_isLeftKanExtension πŸ“–mathematicalβ€”IsRightDerivedFunctor
IsLeftKanExtension
β€”IsRightDerivedFunctor.isLeftKanExtension
isRightDerivedFunctor_iff_of_iso πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsRightDerivedFunctorβ€”isLeftKanExtension_iff_of_iso
rightDerivedNatIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightDerivedNatIso
rightDerivedNatTrans
β€”β€”
rightDerivedNatIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightDerivedNatIso
rightDerivedNatTrans
β€”β€”
rightDerivedNatTrans_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.NatTrans.app
rightDerivedNatTrans
β€”rightDerived_fac_app
rightDerivedNatTrans_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
comp
rightDerivedNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedNatTrans_app
rightDerivedNatTrans_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerivedNatTrans
β€”rightDerived_ext
rightDerivedNatTrans_fac_assoc
rightDerivedNatTrans_fac
CategoryTheory.Category.assoc
rightDerivedNatTrans_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
rightDerivedNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedNatTrans_comp
rightDerivedNatTrans_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
rightDerivedNatTrans
β€”rightDerived_fac
rightDerivedNatTrans_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
rightDerivedNatTrans
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerivedNatTrans_fac
rightDerivedNatTrans_id πŸ“–mathematicalβ€”rightDerivedNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
β€”rightDerived_ext
rightDerivedNatTrans_fac
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
rightDerived_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
β€”β€”IsRightDerivedFunctor.isLeftKanExtension
hom_ext_of_isLeftKanExtension
rightDerived_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
rightDerivedDesc
β€”IsRightDerivedFunctor.isLeftKanExtension
descOfIsLeftKanExtension_fac
rightDerived_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.NatTrans.app
rightDerivedDesc
β€”IsRightDerivedFunctor.isLeftKanExtension
descOfIsLeftKanExtension_fac_app
rightDerived_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
comp
rightDerivedDesc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerived_fac_app
rightDerived_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
rightDerivedDesc
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightDerived_fac

CategoryTheory.Functor.HasRightDerivedFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.HasLeftKanExtensionβ€”CategoryTheory.Functor.hasRightDerivedFunctor_iff
hasLeftKanExtension' πŸ“–mathematicalβ€”CategoryTheory.Functor.HasLeftKanExtension
CategoryTheory.MorphismProperty.Localization
CategoryTheory.MorphismProperty.instCategoryLocalization
CategoryTheory.MorphismProperty.Q
β€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.HasRightDerivedFunctorβ€”CategoryTheory.Functor.IsRightDerivedFunctor.isLeftKanExtension
CategoryTheory.Functor.hasRightDerivedFunctor_iff

CategoryTheory.Functor.IsRightDerivedFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftKanExtensionβ€”β€”

---

← Back to Index