Documentation Verification Report

EpiMono

πŸ“ Source: Mathlib/CategoryTheory/Functor/EpiMono.lean

Statistics

MetricCount
DefinitionsPreservesEpimorphisms, PreservesMonomorphisms, ReflectsEpimorphisms, ReflectsMonomorphisms, splitEpiEquiv, splitMonoEquiv
6
TheoremsinstMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms, strongEpi_map_of_isEquivalence, strongEpi_map_of_strongEpi, preserves, preserves, reflects, reflects, epi_map_iff_epi, epi_of_epi_map, instIsSplitEpiApp, instIsSplitMonoApp, isSplitEpi_iff, isSplitMono_iff, map_epi, map_mono, mono_map_iff_mono, mono_of_mono_map, iso_iff, ofRetract, of_iso, of_natTrans, preservesEpimorphisms_comp, preservesEpimorphisms_of_adjunction, preservesEpimorphisms_of_isLeftAdjoint, preservesEpimorphisms_of_preserves_of_reflects, iso_iff, ofRetract, of_iso, of_natTrans, preservesMonomorphisms_comp, preservesMonomorphisms_of_adjunction, preservesMonomorphisms_of_isRightAdjoint, preservesMonomorphisms_of_preserves_of_reflects, iso_iff, of_iso, reflectsEpimorphisms_comp, reflectsEpimorphisms_of_faithful, reflectsEpimorphisms_of_preserves_of_reflects, iso_iff, of_iso, reflectsMonomorphisms_comp, reflectsMonomorphisms_of_faithful, reflectsMonomorphisms_of_preserves_of_reflects, splitEpiCategoryImpOfIsEquivalence, strongEpi_map_iff_strongEpi_of_isEquivalence
45
Total51

CategoryTheory.Adjunction

Theorems

NameKindAssumesProvesValidatesDepends On
instMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
β€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.mono_of_mono_fac
Equiv.symm_apply_apply
homEquiv_counit
strongEpi_map_of_isEquivalence πŸ“–mathematicalβ€”CategoryTheory.StrongEpi
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”strongEpi_map_of_strongEpi
CategoryTheory.Functor.preservesMonomorphisms_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.preservesEpimorphisms_of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
strongEpi_map_of_strongEpi πŸ“–mathematicalβ€”CategoryTheory.StrongEpi
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”CategoryTheory.Functor.map_epi
CategoryTheory.epi_of_strongEpi
hasLiftingProperty_iff
CategoryTheory.StrongEpi.llp
CategoryTheory.Functor.map_mono

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PreservesEpimorphisms πŸ“–CompData
38 mathmath: preservesEpimorphisms_of_map_exact, AddGrpCat.forget_grp_preserves_epi, preservesEpimorphisms_of_preserves_of_reflects, preservesEpimorphisms.of_iso, preservesEpimorphisms_of_preserves_shortExact_right, LightCondMod.instPreservesEpimorphismsLightCondSetForget, ModuleCat.forget_preservesEpimorphisms, instPreservesEpimorphismsLightProfiniteLightCondSetLightProfiniteToLightCondSet, instPreservesEpimorphismsCompHausCondensedSetCompHausToCondensed, preservesEpimorphisms_of_adjunction_of_preservesProjectiveObjects, preservesEpimorphisms.of_natTrans, instPreservesEpimorphisms, preservesEpimorphisms_of_isLeftAdjoint, AddCommGrpCat.forget_commGrp_preserves_epi, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_coyoneda_obj, preservesEpimorphisms.iso_iff, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', LightCondensed.instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyonedaObj, CategoryTheory.ConcreteCategory.forgetβ‚‚_preservesEpimorphisms, preservesEpimorphisms_comp, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyoneda_obj, preservesEpimorphisms.ofRetract, CategoryTheory.ConcreteCategory.surjective_eq_epimorphisms_iff, GrpCat.forget_grp_preserves_epi, preservesEpimorphisms_of_adjunction, CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape, CategoryTheory.ShortComplex.preservesEpimorphisms_Ο€β‚‚, CategoryTheory.InternallyProjective.preserves_epi, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, CommGrpCat.forget_commGrp_preserves_epi, CategoryTheory.ShortComplex.preservesEpimorphisms_π₁, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_yoneda_obj, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditiveYoneda_obj, CategoryTheory.Idempotents.instPreservesEpimorphismsKaroubiToKaroubi, CategoryTheory.ShortComplex.preservesEpimorphisms_π₃, CategoryTheory.PreGaloisCategory.FiberFunctor.preservesEpis
PreservesMonomorphisms πŸ“–CompData
29 mathmath: ModuleCat.instPreservesMonomorphismsRestrictScalars, CategoryTheory.Limits.instPreservesMonomorphismsObjFunctorTypeSigmaConst, AddCommGrpCat.instPreservesMonomorphismsFree, preservesMonomorphisms.of_iso, ModuleCat.forget_preservesMonomorphisms, AddGrpCat.forget_grp_preserves_mono, CommGrpCat.forget_commGrp_preserves_mono, preservesMonomorphisms_of_preserves_of_reflects, preservesMonomorphisms_comp, preservesMonomorphisms_of_adjunction_of_preservesInjectiveObjects, instPreservesMonomorphisms, preservesMonomorphisms_of_preserves_shortExact_left, AddCommGrpCat.forget_commGrp_preserves_mono, preservesMonomorphisms_of_isRightAdjoint, preservesMonomorphisms_of_adjunction, CategoryTheory.ConcreteCategory.injective_eq_monomorphisms_iff, CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape, CategoryTheory.ShortComplex.preservesMonomorphisms_π₁, preservesMonomorphisms.of_natTrans, CategoryTheory.ShortComplex.preservesMonomorphisms_Ο€β‚‚, TopCat.Presheaf.stalkFunctor_preserves_mono, CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, CategoryTheory.ConcreteCategory.forgetβ‚‚_preservesMonomorphisms, CategoryTheory.Idempotents.instPreservesMonomorphismsKaroubiToKaroubi, preservesMonomorphisms_of_map_exact, preservesMonomorphisms.ofRetract, GrpCat.forget_grp_preserves_mono, preservesMonomorphisms.iso_iff, CategoryTheory.ShortComplex.preservesMonomorphisms_π₃
ReflectsEpimorphisms πŸ“–CompData
7 mathmath: LightCondMod.instReflectsEpimorphismsLightCondSetForget, reflectsEpimorphisms.iso_iff, reflectsEpimorphisms_of_faithful, CategoryTheory.reflectsEpimorphisms_of_reflectsColimitsOfShape, reflectsEpimorphisms_of_preserves_of_reflects, reflectsEpimorphisms.of_iso, reflectsEpimorphisms_comp
ReflectsMonomorphisms πŸ“–CompData
8 mathmath: reflectsMonomorphisms.iso_iff, CategoryTheory.PreGaloisCategory.FiberFunctor.instReflectsMonomorphismsFintypeCat, reflectsMonomorphisms_of_faithful, CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape, reflectsMonomorphisms.of_iso, reflectsMonomorphisms_comp, reflectsMonomorphisms_of_preserves_of_reflects, CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction
splitEpiEquiv πŸ“–CompOpβ€”
splitMonoEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
epi_map_iff_epi πŸ“–mathematicalβ€”CategoryTheory.Epi
obj
map
β€”epi_of_epi_map
map_epi
epi_of_epi_map πŸ“–mathematicalβ€”CategoryTheory.Epiβ€”ReflectsEpimorphisms.reflects
instIsSplitEpiApp πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpi
obj
CategoryTheory.NatTrans.app
β€”CategoryTheory.instIsSplitEpiMap
instIsSplitMonoApp πŸ“–mathematicalβ€”CategoryTheory.IsSplitMono
obj
CategoryTheory.NatTrans.app
β€”CategoryTheory.instIsSplitMonoMap
isSplitEpi_iff πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpi
obj
map
β€”CategoryTheory.IsSplitEpi.mk'
CategoryTheory.IsSplitEpi.exists_splitEpi
isSplitMono_iff πŸ“–mathematicalβ€”CategoryTheory.IsSplitMono
obj
map
β€”CategoryTheory.IsSplitMono.mk'
CategoryTheory.IsSplitMono.exists_splitMono
map_epi πŸ“–mathematicalβ€”CategoryTheory.Epi
obj
map
β€”PreservesEpimorphisms.preserves
map_mono πŸ“–mathematicalβ€”CategoryTheory.Mono
obj
map
β€”PreservesMonomorphisms.preserves
mono_map_iff_mono πŸ“–mathematicalβ€”CategoryTheory.Mono
obj
map
β€”mono_of_mono_map
map_mono
mono_of_mono_map πŸ“–mathematicalβ€”CategoryTheory.Monoβ€”ReflectsMonomorphisms.reflects
preservesEpimorphisms_comp πŸ“–mathematicalβ€”PreservesEpimorphisms
comp
β€”comp_map
map_epi
preservesEpimorphisms_of_adjunction πŸ“–mathematicalβ€”PreservesEpimorphismsβ€”Equiv.apply_eq_iff_eq
CategoryTheory.cancel_epi
CategoryTheory.Adjunction.homEquiv_naturality_left
preservesEpimorphisms_of_isLeftAdjoint πŸ“–mathematicalβ€”PreservesEpimorphismsβ€”preservesEpimorphisms_of_adjunction
preservesEpimorphisms_of_preserves_of_reflects πŸ“–mathematicalβ€”PreservesEpimorphismsβ€”epi_of_epi_map
map_epi
preservesMonomorphisms_comp πŸ“–mathematicalβ€”PreservesMonomorphisms
comp
β€”comp_map
map_mono
preservesMonomorphisms_of_adjunction πŸ“–mathematicalβ€”PreservesMonomorphismsβ€”Equiv.apply_eq_iff_eq
CategoryTheory.cancel_mono
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
preservesMonomorphisms_of_isRightAdjoint πŸ“–mathematicalβ€”PreservesMonomorphismsβ€”preservesMonomorphisms_of_adjunction
preservesMonomorphisms_of_preserves_of_reflects πŸ“–mathematicalβ€”PreservesMonomorphismsβ€”mono_of_mono_map
map_mono
reflectsEpimorphisms_comp πŸ“–mathematicalβ€”ReflectsEpimorphisms
comp
β€”epi_of_epi_map
reflectsEpimorphisms_of_faithful πŸ“–mathematicalβ€”ReflectsEpimorphismsβ€”map_injective
CategoryTheory.cancel_epi
map_comp
reflectsEpimorphisms_of_preserves_of_reflects πŸ“–mathematicalβ€”ReflectsEpimorphismsβ€”epi_of_epi_map
map_epi
reflectsMonomorphisms_comp πŸ“–mathematicalβ€”ReflectsMonomorphisms
comp
β€”mono_of_mono_map
reflectsMonomorphisms_of_faithful πŸ“–mathematicalβ€”ReflectsMonomorphismsβ€”map_injective
CategoryTheory.cancel_mono
map_comp
reflectsMonomorphisms_of_preserves_of_reflects πŸ“–mathematicalβ€”ReflectsMonomorphismsβ€”mono_of_mono_map
map_mono
splitEpiCategoryImpOfIsEquivalence πŸ“–mathematicalβ€”CategoryTheory.SplitEpiCategoryβ€”isSplitEpi_iff
IsEquivalence.full
isEquivalence_inv
IsEquivalence.faithful
CategoryTheory.isSplitEpi_of_epi
map_epi
preservesEpimorphisms_of_isLeftAdjoint
isLeftAdjoint_of_isEquivalence
strongEpi_map_iff_strongEpi_of_isEquivalence πŸ“–mathematicalβ€”CategoryTheory.StrongEpi
obj
map
β€”CategoryTheory.StrongEpi.iff_of_arrow_iso
CategoryTheory.Adjunction.strongEpi_map_of_isEquivalence
isEquivalence_inv

CategoryTheory.Functor.PreservesEpimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
preserves πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”

CategoryTheory.Functor.PreservesMonomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
preserves πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”

CategoryTheory.Functor.ReflectsEpimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
reflects πŸ“–mathematicalβ€”CategoryTheory.Epiβ€”β€”

CategoryTheory.Functor.ReflectsMonomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
reflects πŸ“–mathematicalβ€”CategoryTheory.Monoβ€”β€”

CategoryTheory.Functor.preservesEpimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesEpimorphismsβ€”of_iso
ofRetract πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesEpimorphismsβ€”CategoryTheory.Functor.PreservesEpimorphisms.preserves
of_natTrans
CategoryTheory.IsSplitEpi.epi
CategoryTheory.Functor.instIsSplitEpiApp
CategoryTheory.Retract.instIsSplitEpiR
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesEpimorphismsβ€”of_natTrans
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.NatIso.hom_app_isIso
of_natTrans πŸ“–mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.PreservesEpimorphismsβ€”CategoryTheory.NatTrans.naturality
CategoryTheory.epi_comp
CategoryTheory.Functor.map_epi
CategoryTheory.epi_of_epi

CategoryTheory.Functor.preservesMonomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesMonomorphismsβ€”of_iso
ofRetract πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesMonomorphismsβ€”CategoryTheory.Functor.PreservesMonomorphisms.preserves
of_natTrans
CategoryTheory.IsSplitMono.mono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.Retract.instIsSplitMonoI
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesMonomorphismsβ€”of_natTrans
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.NatIso.inv_app_isIso
of_natTrans πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.PreservesMonomorphismsβ€”CategoryTheory.NatTrans.naturality
CategoryTheory.mono_comp
CategoryTheory.Functor.map_mono
CategoryTheory.mono_of_mono

CategoryTheory.Functor.reflectsEpimorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsEpimorphismsβ€”of_iso
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsEpimorphismsβ€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
CategoryTheory.Iso.app_hom
CategoryTheory.NatTrans.naturality
CategoryTheory.epi_comp
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv

CategoryTheory.Functor.reflectsMonomorphisms

Theorems

NameKindAssumesProvesValidatesDepends On
iso_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsMonomorphismsβ€”of_iso
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsMonomorphismsβ€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
CategoryTheory.Iso.app_hom
CategoryTheory.NatTrans.naturality
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv

---

← Back to Index