Documentation Verification Report

Flat

📁 Source: Mathlib/CategoryTheory/Functor/Flat.lean

Statistics

MetricCount
DefinitionsRepresentablyCoflat, RepresentablyFlat, lanEvaluationIsoColim
3
Theoremsfac, uniq, comp, filtered, id, of_isLeftAdjoint, of_iso, cofiltered, comp, id, of_isRightAdjoint, of_iso, coflat_of_preservesFiniteColimits, final_of_representablyFlat, flat_iff_lan_flat, flat_of_preservesFiniteLimits, initial_of_representablyCoflat, instFinalStructuredArrowCompPreOfRepresentablyFlat, instInitialCostructuredArrowCompPreOfRepresentablyCoflat, instIsCofilteredElementsCompOfRepresentablyFlat, instIsCofilteredStructuredArrowCompOfRepresentablyFlat, instIsFilteredCostructuredArrowCompOfRepresentablyCoflat, instRepresentablyCoflatOppositeOpOfRepresentablyFlat, instRepresentablyFlatOppositeOpOfRepresentablyCoflat, lan_flat_of_flat, lan_preservesFiniteLimits_of_flat, lan_preservesFiniteLimits_of_preservesFiniteLimits, preservesFiniteColimits_iff_coflat, preservesFiniteColimits_of_coflat, preservesFiniteLimits_iff_flat, preservesFiniteLimits_iff_lan_preservesFiniteLimits, preservesFiniteLimits_of_flat, representablyCoflat_op_iff, representablyFlat_op_iff
34
Total37

CategoryTheory

Definitions

NameCategoryTheorems
RepresentablyCoflat 📖CompData
10 mathmath: representablyFlat_op_iff, RepresentablyCoflat.of_isLeftAdjoint, instRepresentablyCoflatOppositeOpOfRepresentablyFlat, RepresentablyCoflat.comp, preservesFiniteColimits_iff_coflat, RepresentablyCoflat.id, RepresentablyCoflat.of_iso, coflat_of_preservesFiniteColimits, instRepresentablyCoflatIndYoneda, representablyCoflat_op_iff
RepresentablyFlat 📖CompData
12 mathmath: RepresentablyFlat.comp, RepresentablyFlat.of_isRightAdjoint, instRepresentablyFlatOppositeOpOfRepresentablyCoflat, representablyFlat_op_iff, RepresentablyFlat.of_iso, flat_iff_lan_flat, lan_flat_of_flat, RepresentablyFlat.id, preservesFiniteLimits_iff_flat, flat_of_preservesFiniteLimits, representablyCoflat_op_iff, instRepresentablyFlatOpensCarrierMap
lanEvaluationIsoColim 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coflat_of_preservesFiniteColimits 📖mathematicalRepresentablyCoflatLimits.preservesFiniteLimits_op
representablyFlat_op_iff
flat_of_preservesFiniteLimits
Limits.hasFiniteLimits_opposite
final_of_representablyFlat 📖mathematicalFunctor.FinalIsCofiltered.isConnected
RepresentablyFlat.cofiltered
flat_iff_lan_flat 📖mathematicalRepresentablyFlat
Functor
Opposite
Category.opposite
types
Functor.category
Functor.lan
Functor.op
Functor.instHasLeftKanExtension
Limits.Types.hasColimit
CostructuredArrow
instCategoryCostructuredArrow
UnivLE.small
UnivLE.self
Functor.comp
CostructuredArrow.proj
Functor.instHasLeftKanExtension
Limits.Types.hasColimit
UnivLE.small
UnivLE.self
lan_flat_of_flat
Limits.Types.hasLimitsOfSize
Limits.Types.hasColimitsOfSize
Types.instReflectsLimitsOfSizeForgetTypeHom
Limits.PreservesColimits.preservesFilteredColimits
Types.instPreservesColimitsOfSizeForgetTypeHom
Types.instPreservesLimitsOfSizeForgetTypeHom
flat_of_preservesFiniteLimits
Limits.preservesFiniteLimits_of_preservesFiniteLimitsOfSize
preservesLimit_of_lan_preservesLimit
Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
preservesFiniteLimits_of_flat
flat_of_preservesFiniteLimits 📖mathematicalRepresentablyFlatIsCofiltered.of_hasFiniteLimits
Limits.hasFiniteLimits_of_hasFiniteLimits_of_size
StructuredArrow.hasLimit
Limits.hasLimitOfHasLimitsOfShape
Limits.hasLimitsOfShape_of_hasFiniteLimits
preservesLimit_comp_of_createsLimit
Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
Limits.PreservesLimitsOfShape.preservesLimit
Limits.comp_preservesLimitsOfShape
preservesLimitOfShape_of_createsLimitsOfShape_and_hasLimitsOfShape
initial_of_representablyCoflat 📖mathematicalFunctor.InitialIsFiltered.isConnected
RepresentablyCoflat.filtered
instFinalStructuredArrowCompPreOfRepresentablyFlat 📖mathematicalFunctor.Final
StructuredArrow
Functor.comp
instCategoryStructuredArrow
StructuredArrow.pre
isConnected_of_equivalent
IsCofiltered.isConnected
RepresentablyFlat.cofiltered
instInitialCostructuredArrowCompPreOfRepresentablyCoflat 📖mathematicalFunctor.Initial
CostructuredArrow
Functor.comp
instCategoryCostructuredArrow
CostructuredArrow.pre
isConnected_of_equivalent
IsFiltered.isConnected
RepresentablyCoflat.filtered
instIsCofilteredElementsCompOfRepresentablyFlat 📖mathematicalIsCofiltered
Functor.Elements
Functor.comp
types
categoryOfElements
IsCofiltered.of_equivalence
instIsCofilteredStructuredArrowCompOfRepresentablyFlat
instIsCofilteredStructuredArrowCompOfRepresentablyFlat 📖mathematicalIsCofiltered
StructuredArrow
Functor.comp
instCategoryStructuredArrow
IsCofiltered.nonempty
RepresentablyFlat.cofiltered
IsCofiltered.toIsCofilteredOrEmpty
Category.assoc
StructuredArrow.w
IsCofiltered.eq_condition
StructuredArrow.hom_ext
instIsFilteredCostructuredArrowCompOfRepresentablyCoflat 📖mathematicalIsFiltered
CostructuredArrow
Functor.comp
instCategoryCostructuredArrow
isCofiltered_op_iff_isFiltered
IsCofiltered.iff_of_equivalence
instIsCofilteredStructuredArrowCompOfRepresentablyFlat
instRepresentablyFlatOppositeOpOfRepresentablyCoflat
instRepresentablyCoflatOppositeOpOfRepresentablyFlat 📖mathematicalRepresentablyCoflat
Opposite
Category.opposite
Functor.op
representablyCoflat_op_iff
instRepresentablyFlatOppositeOpOfRepresentablyCoflat 📖mathematicalRepresentablyFlat
Opposite
Category.opposite
Functor.op
representablyFlat_op_iff
lan_flat_of_flat 📖mathematicalRepresentablyFlat
Functor
Opposite
Category.opposite
Functor.category
Functor.lan
Functor.op
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
CostructuredArrow
instCategoryCostructuredArrow
Limits.hasColimitsOfShapeOfHasColimitsOfSize
Functor.comp
CostructuredArrow.proj
flat_of_preservesFiniteLimits
Limits.hasFiniteLimits_of_hasLimits
Limits.functorCategoryHasLimitsOfSize
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShapeOfHasColimitsOfSize
lan_preservesFiniteLimits_of_flat
lan_preservesFiniteLimits_of_flat 📖mathematicalLimits.PreservesFiniteLimits
Functor
Opposite
Category.opposite
Functor.category
Functor.lan
Functor.op
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
CostructuredArrow
instCategoryCostructuredArrow
Limits.hasColimitsOfShapeOfHasColimitsOfSize
Functor.comp
CostructuredArrow.proj
Limits.preservesFiniteLimits_of_preservesFiniteLimitsOfSize
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShapeOfHasColimitsOfSize
Limits.preservesLimitsOfShape_of_evaluation
Limits.preservesLimitsOfShape_of_natIso
Limits.comp_preservesLimitsOfShape
whiskeringLeft_preservesLimitsOfShape
Limits.hasLimitsOfShape_of_hasFiniteLimits
Limits.hasFiniteLimits_of_hasLimits
Limits.filtered_colim_preservesFiniteLimits
UnivLE.small
UnivLE.self
IsFiltered.of_equivalence
isFiltered_op_of_isCofiltered
RepresentablyFlat.cofiltered
Limits.reflectsLimitsOfShape_of_reflectsLimits
Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
Limits.PreservesLimits.preservesFiniteLimits
lan_preservesFiniteLimits_of_preservesFiniteLimits 📖mathematicalLimits.PreservesFiniteLimits
Functor
Opposite
Category.opposite
Functor.category
Functor.lan
Functor.op
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
CostructuredArrow
instCategoryCostructuredArrow
Limits.hasColimitsOfShapeOfHasColimitsOfSize
Functor.comp
CostructuredArrow.proj
Functor.instHasLeftKanExtension
Limits.hasColimitOfHasColimitsOfShape
Limits.hasColimitsOfShapeOfHasColimitsOfSize
lan_preservesFiniteLimits_of_flat
flat_of_preservesFiniteLimits
preservesFiniteColimits_iff_coflat 📖mathematicalRepresentablyCoflat
Limits.PreservesFiniteColimits
preservesFiniteColimits_of_coflat
coflat_of_preservesFiniteColimits
preservesFiniteColimits_of_coflat 📖mathematicalLimits.PreservesFiniteColimitsLimits.preservesFiniteColimits_of_op
preservesFiniteLimits_of_flat
instRepresentablyFlatOppositeOpOfRepresentablyCoflat
preservesFiniteLimits_iff_flat 📖mathematicalRepresentablyFlat
Limits.PreservesFiniteLimits
preservesFiniteLimits_of_flat
flat_of_preservesFiniteLimits
preservesFiniteLimits_iff_lan_preservesFiniteLimits 📖mathematicalLimits.PreservesFiniteLimits
Functor
Opposite
Category.opposite
types
Functor.category
Functor.lan
Functor.op
Functor.instHasLeftKanExtension
Limits.Types.hasColimit
CostructuredArrow
instCategoryCostructuredArrow
UnivLE.small
UnivLE.self
Functor.comp
CostructuredArrow.proj
Functor.instHasLeftKanExtension
Limits.Types.hasColimit
UnivLE.small
UnivLE.self
lan_preservesFiniteLimits_of_preservesFiniteLimits
Limits.Types.hasLimitsOfSize
Limits.Types.hasColimitsOfSize
Types.instReflectsLimitsOfSizeForgetTypeHom
Limits.PreservesColimits.preservesFilteredColimits
Types.instPreservesColimitsOfSizeForgetTypeHom
Types.instPreservesLimitsOfSizeForgetTypeHom
Limits.preservesFiniteLimits_of_preservesFiniteLimitsOfSize
preservesLimit_of_lan_preservesLimit
Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
preservesFiniteLimits_of_flat 📖mathematicalLimits.PreservesFiniteLimitsLimits.preservesFiniteLimits_of_preservesFiniteLimitsOfSize
PreservesFiniteLimitsOfFlat.fac
PreservesFiniteLimitsOfFlat.uniq
representablyCoflat_op_iff 📖mathematicalRepresentablyCoflat
Opposite
Category.opposite
Functor.op
RepresentablyFlat
IsFiltered.of_equivalence
RepresentablyCoflat.filtered
isCofiltered_of_isFiltered_op
IsCofiltered.of_equivalence
isCofiltered_op_of_isFiltered
isFiltered_op_of_isCofiltered
RepresentablyFlat.cofiltered
isFiltered_of_isCofiltered_op
representablyFlat_op_iff 📖mathematicalRepresentablyFlat
Opposite
Category.opposite
Functor.op
RepresentablyCoflat
IsCofiltered.of_equivalence
RepresentablyFlat.cofiltered
isFiltered_of_isCofiltered_op
IsFiltered.of_equivalence
isFiltered_op_of_isCofiltered
isCofiltered_op_of_isFiltered
RepresentablyCoflat.filtered
isCofiltered_of_isFiltered_op

CategoryTheory.PreservesFiniteLimitsOfFlat

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cone.π
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Category.comp_id
CategoryTheory.StructuredArrow.w
uniq 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.mapCone
CategoryTheory.Limits.Cone.π
CategoryTheory.StructuredArrow.eqToHom_right
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.RepresentablyFlat.cofiltered
CategoryTheory.NatTrans.naturality
CategoryTheory.Limits.Cone.w
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.IsLimit.uniq
CategoryTheory.CommaMorphism.w

CategoryTheory.RepresentablyCoflat

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalCategoryTheory.RepresentablyCoflat
CategoryTheory.Functor.comp
CategoryTheory.representablyFlat_op_iff
CategoryTheory.RepresentablyFlat.comp
CategoryTheory.instRepresentablyFlatOppositeOpOfRepresentablyCoflat
filtered 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
id 📖mathematicalCategoryTheory.RepresentablyCoflat
CategoryTheory.Functor.id
of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
of_isLeftAdjoint 📖mathematicalCategoryTheory.RepresentablyCoflatCategoryTheory.IsFiltered.of_isTerminal
of_iso 📖mathematicalCategoryTheory.RepresentablyCoflatCategoryTheory.IsFiltered.of_equivalence
filtered

CategoryTheory.RepresentablyFlat

Theorems

NameKindAssumesProvesValidatesDepends On
cofiltered 📖mathematicalCategoryTheory.IsCofiltered
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp 📖mathematicalCategoryTheory.RepresentablyFlat
CategoryTheory.Functor.comp
CategoryTheory.IsCofiltered.of_cone_nonempty
CategoryTheory.IsCofiltered.cone_nonempty
cofiltered
CategoryTheory.Limits.Cone.w
CategoryTheory.Functor.map_id
CategoryTheory.StructuredArrow.homMk.congr_simp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.StructuredArrow.w
CategoryTheory.Category.id_comp
id 📖mathematicalCategoryTheory.RepresentablyFlat
CategoryTheory.Functor.id
of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
of_isRightAdjoint 📖mathematicalCategoryTheory.RepresentablyFlatCategoryTheory.IsCofiltered.of_isInitial
of_iso 📖mathematicalCategoryTheory.RepresentablyFlatCategoryTheory.IsCofiltered.of_equivalence
cofiltered

---

← Back to Index