Documentation Verification Report

FullyFaithful

πŸ“ Source: Mathlib/CategoryTheory/Functor/FullyFaithful.lean

Statistics

MetricCount
Definitionsdiv, FullyFaithful, comp, homEquiv, id, isoEquiv, ofCompFaithful, ofFullyFaithful, ofIso, preimage, preimageIso, fullyFaithfulCancelRight, preimage, preimageIso
14
Theoremscomp, div_comp, div_faithful, id, map_injective, of_comp, of_comp_eq, of_comp_iso, of_iso, comp, id, map_surjective, of_comp_faithful, of_comp_faithful_iso, of_iso, comp_preimage, faithful, full, homEquiv_apply, homEquiv_symm_apply, id_preimage, instSubsingleton, isIso_of_isIso_map, isoEquiv_apply, isoEquiv_symm_apply, map_bijective, map_injective, map_preimage, map_surjective, nonempty_iff_map_bijective, preimageIso_hom, preimageIso_inv, preimage_comp, preimage_comp_assoc, preimage_id, preimage_map, fullyFaithfulCancelRight_hom_app, fullyFaithfulCancelRight_inv_app, instFaithfulOfIsThin, mapIso_injective, map_injective, map_injective_iff, map_preimage, map_surjective, preimageIso_hom, preimageIso_inv, preimageIso_mapIso, preimage_comp, preimage_id, preimage_map, faithful_of_comp, isIso_of_fully_faithful, faithful_of_comp
53
Total67

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_of_fully_faithful πŸ“–mathematicalβ€”IsIsoβ€”Functor.map_injective
Functor.map_comp
Functor.map_preimage
IsIso.hom_inv_id
Functor.map_id
IsIso.inv_hom_id

CategoryTheory.Functor

Definitions

NameCategoryTheorems
FullyFaithful πŸ“–CompData
7 mathmath: FullyFaithful.instSubsingleton, FullyFaithful.nonempty_iff_map_bijective, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, isDense_iff_fullyFaithful_restrictedULiftYoneda, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful
fullyFaithfulCancelRight πŸ“–CompOp
3 mathmath: fullyFaithfulCancelRight_inv_app, fullyFaithfulCancelRight_hom_app, CategoryTheory.equivEssImageOfReflective_counitIso
preimage πŸ“–CompOp
13 mathmath: preimage_map, fullyFaithfulCancelRight_inv_app, CategoryTheory.MonoOver.image_map, preimage_comp, IsCoverDense.presheafIso_hom_app, fullyFaithfulCancelRight_hom_app, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, preimageIso_inv, preimageIso_hom, essImage.liftFunctor_map, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app, map_preimage, preimage_id
preimageIso πŸ“–CompOp
3 mathmath: preimageIso_inv, preimageIso_hom, preimageIso_mapIso

Theorems

NameKindAssumesProvesValidatesDepends On
fullyFaithfulCancelRight_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
fullyFaithfulCancelRight
preimage
obj
comp
β€”β€”
fullyFaithfulCancelRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
fullyFaithfulCancelRight
preimage
obj
comp
β€”β€”
instFaithfulOfIsThin πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Faithfulβ€”β€”
mapIso_injective πŸ“–mathematicalβ€”CategoryTheory.Iso
obj
mapIso
β€”CategoryTheory.Iso.ext
map_injective
map_injective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
map
β€”Faithful.map_injective
map_injective_iff πŸ“–mathematicalβ€”mapβ€”map_injective
map_preimage πŸ“–mathematicalβ€”map
preimage
β€”map_surjective
map_surjective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
map
β€”Full.map_surjective
preimageIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
preimageIso
preimage
obj
β€”β€”
preimageIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
preimageIso
preimage
obj
β€”β€”
preimageIso_mapIso πŸ“–mathematicalβ€”preimageIso
mapIso
β€”CategoryTheory.Iso.ext
preimage_map
preimage_comp πŸ“–mathematicalβ€”preimage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
β€”map_injective
map_preimage
map_comp
preimage_id πŸ“–mathematicalβ€”preimage
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
β€”map_injective
map_preimage
map_id
preimage_map πŸ“–mathematicalβ€”preimage
map
β€”map_injective
map_preimage

CategoryTheory.Functor.Faithful

Definitions

NameCategoryTheorems
div πŸ“–CompOp
2 mathmath: div_faithful, div_comp

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor.comp
β€”CategoryTheory.Functor.map_injective
div_comp πŸ“–mathematicalCategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
div
β€”β€”
div_faithful πŸ“–mathematicalCategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.Faithful
div
β€”Eq.faithful_of_comp
div_comp
id πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor.id
β€”β€”
map_injective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”
of_comp πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithfulβ€”Function.Injective.of_comp
CategoryTheory.Functor.map_injective
of_comp_eq πŸ“–mathematicalCategoryTheory.Functor.compCategoryTheory.Functor.Faithfulβ€”of_comp
of_comp_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithfulβ€”of_comp
of_iso
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithfulβ€”CategoryTheory.Functor.map_injective
CategoryTheory.NatIso.naturality_1

CategoryTheory.Functor.Full

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor.comp
β€”CategoryTheory.Functor.map_preimage
id πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor.id
β€”β€”
map_surjective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”β€”
of_comp_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Fullβ€”CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_preimage
of_comp_faithful_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.Fullβ€”of_iso
of_comp_faithful
of_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.Fullβ€”CategoryTheory.NatIso.naturality_1
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
1 mathmath: comp_preimage
homEquiv πŸ“–CompOp
5 mathmath: homEquiv_apply, homEquiv_symm_apply, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app
id πŸ“–CompOp
1 mathmath: id_preimage
isoEquiv πŸ“–CompOp
2 mathmath: isoEquiv_apply, isoEquiv_symm_apply
ofCompFaithful πŸ“–CompOpβ€”
ofFullyFaithful πŸ“–CompOpβ€”
ofIso πŸ“–CompOpβ€”
preimage πŸ“–CompOp
44 mathmath: preimage_map, mapMon_preimage_hom, CategoryTheory.Limits.FormalCoproduct.fullyFaithfulIncl_preimage, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, mapGrp_preimage, homNatIsoMaxRight_hom_app_down, monObj_mul, autMulEquivOfFullyFaithful_symm_apply_hom, compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, preimage_comp, grpObj_inv, preimageIso_inv, preimageIso_hom, homEquiv_symm_apply, AlgebraicGeometry.Spec.map_preimage_unop, CategoryTheory.fullyFaithfulSheafToPresheaf_preimage_val, CategoryTheory.Adjunction.restrictFullyFaithful_homEquiv_apply, mulEquivEnd_symm_apply, whiskeringRight_preimage_app, homNatIso'_hom_app_down, AlgebraicGeometry.SheafedSpace.fullyFaithfulForgetToPresheafedSpace_preimage_hom, SheafOfModules.fullyFaithfulForget_preimage_val, monObj_one, comp_preimage, homMulEquiv_symm_apply, mapCommMon_preimage, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, AlgebraicGeometry.Scheme.fullyFaithfulForgetToLocallyRingedSpace_preimage_toLRSHom, autMulEquivOfFullyFaithful_symm_apply_inv, compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, isMonHom_preimage, mapCommGrp_preimage, compUliftYonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, grpObj_mul, preimage_comp_assoc, CategoryTheory.Coyoneda.fullyFaithful_preimage, CategoryTheory.Yoneda.fullyFaithful_preimage, grpObj_one, map_preimage, homNatIso_hom_app_down, id_preimage, preimage_id
preimageIso πŸ“–CompOp
6 mathmath: CategoryTheory.Equivalence.congrFullSubcategory_counitIso, preimageIso_inv, preimageIso_hom, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, isoEquiv_symm_apply, CategoryTheory.Limits.CategoricalPullback.mkNatIso_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comp_preimage πŸ“–mathematicalβ€”preimage
CategoryTheory.Functor.comp
comp
CategoryTheory.Functor.obj
β€”β€”
faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithfulβ€”map_injective
full πŸ“–mathematicalβ€”CategoryTheory.Functor.Fullβ€”map_surjective
homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
β€”β€”
homEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
preimage
β€”β€”
id_preimage πŸ“–mathematicalβ€”preimage
CategoryTheory.Functor.id
id
β€”β€”
instSubsingleton πŸ“–mathematicalβ€”CategoryTheory.Functor.FullyFaithfulβ€”faithful
CategoryTheory.Functor.map_injective
isIso_of_isIso_map πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”preimage_map
CategoryTheory.Iso.isIso_hom
isoEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Iso
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
isoEquiv
CategoryTheory.Functor.mapIso
β€”β€”
isoEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Iso
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isoEquiv
preimageIso
β€”β€”
map_bijective πŸ“–mathematicalβ€”Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”Equiv.bijective
map_injective πŸ“–β€”CategoryTheory.Functor.mapβ€”β€”Equiv.injective
map_preimage πŸ“–mathematicalβ€”CategoryTheory.Functor.map
preimage
β€”β€”
map_surjective πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”Equiv.surjective
nonempty_iff_map_bijective πŸ“–mathematicalβ€”CategoryTheory.Functor.FullyFaithful
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”map_bijective
Function.Bijective.injective
Function.Bijective.surjective
preimageIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
preimageIso
preimage
CategoryTheory.Functor.obj
β€”β€”
preimageIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
preimageIso
preimage
CategoryTheory.Functor.obj
β€”β€”
preimage_comp πŸ“–mathematicalβ€”preimage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”map_injective
map_preimage
CategoryTheory.Functor.map_comp
preimage_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
preimage
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
preimage_comp
preimage_id πŸ“–mathematicalβ€”preimage
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”map_injective
map_preimage
CategoryTheory.Functor.map_id
preimage_map πŸ“–mathematicalβ€”preimage
CategoryTheory.Functor.map
β€”β€”

CategoryTheory.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
faithful_of_comp πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithfulβ€”CategoryTheory.Functor.Faithful.of_comp_iso

Eq

Theorems

NameKindAssumesProvesValidatesDepends On
faithful_of_comp πŸ“–mathematicalCategoryTheory.Functor.compCategoryTheory.Functor.Faithfulβ€”CategoryTheory.Functor.Faithful.of_comp_eq

---

← Back to Index