Documentation Verification Report

FunctorHom

📁 Source: Mathlib/CategoryTheory/Functor/FunctorHom.lean

Statistics

MetricCount
DefinitionsinstEnrichedCategoryFunctorType, HomObj, app, comp, id, map, ofNatTrans, functorHom, functorHomEquiv, homObjEquiv, homObjFunctor, natTransEquiv
12
Theoremsassociator_hom_apply, associator_inv_apply, functorHom_whiskerLeft_natTransEquiv_symm_app, natTransEquiv_symm_app_app_apply, natTransEquiv_symm_whiskerRight_functorHom_app, whiskerLeft_app_apply, whiskerRight_app_apply, comp_app, congr_app, ext, ext_iff, id_app, map_app, naturality, naturality_assoc, ofNatTrans_app, functorHomEquiv_apply_app, functorHomEquiv_symm_apply_app_app, functorHom_ext, functorHom_ext_iff, homObjEquiv_apply_app, homObjEquiv_symm_apply_app, homObjFunctor_map_app, homObjFunctor_obj, natTransEquiv_apply_app, natTransEquiv_symm_apply_app
26
Total38

CategoryTheory.Enriched.Functor

Definitions

NameCategoryTheorems
instEnrichedCategoryFunctorType 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
associator_hom_apply 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
associator_inv_apply 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorHom_whiskerLeft_natTransEquiv_symm_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.natTransEquiv
CategoryTheory.Functor.obj
CategoryTheory.Functor.HomObj
Opposite.unop
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
CategoryTheory.coyoneda
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.HomObj.ofNatTrans
natTransEquiv_symm_app_app_apply 📖mathematicalCategoryTheory.Functor.HomObj.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.rightOp
CategoryTheory.coyoneda
CategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.functorHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.natTransEquiv
natTransEquiv_symm_whiskerRight_functorHom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.natTransEquiv
CategoryTheory.Functor.HomObj
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
CategoryTheory.coyoneda
CategoryTheory.Functor.HomObj.ofNatTrans
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
whiskerLeft_app_apply 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.Functor.obj
whiskerRight_app_apply 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.functorHom
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.Functor.obj

CategoryTheory.Functor

Definitions

NameCategoryTheorems
HomObj 📖CompData
8 mathmath: functorHomEquiv_apply_app, homObjEquiv_apply_app, homObjEquiv_symm_apply_app, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, CategoryTheory.FunctorToTypes.rightAdj_obj_obj, homObjFunctor_obj, functorHomEquiv_symm_apply_app_app
functorHom 📖CompOp
14 mathmath: functorHomEquiv_apply_app, CategoryTheory.Enriched.Functor.associator_inv_apply, natTransEquiv_apply_app, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Enriched.Functor.whiskerLeft_app_apply, natTransEquiv_symm_apply_app, CategoryTheory.Enriched.Functor.associator_hom_apply, CategoryTheory.FunctorToTypes.rightAdj_map_app_app, CategoryTheory.Enriched.Functor.whiskerRight_app_apply, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, functorHomEquiv_symm_apply_app_app
functorHomEquiv 📖CompOp
2 mathmath: functorHomEquiv_apply_app, functorHomEquiv_symm_apply_app_app
homObjEquiv 📖CompOp
2 mathmath: homObjEquiv_apply_app, homObjEquiv_symm_apply_app
homObjFunctor 📖CompOp
2 mathmath: homObjFunctor_map_app, homObjFunctor_obj
natTransEquiv 📖CompOp
5 mathmath: natTransEquiv_apply_app, natTransEquiv_symm_apply_app, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app

Theorems

NameKindAssumesProvesValidatesDepends On
functorHomEquiv_apply_app 📖mathematicalHomObj.app
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
functorHom
HomObj
EquivLike.toFunLike
Equiv.instEquivLike
functorHomEquiv
Opposite.unop
obj
Opposite
CategoryTheory.Category.opposite
rightOp
CategoryTheory.coyoneda
CategoryTheory.NatTrans.app
CategoryTheory.CategoryStruct.id
Opposite.op
functorHomEquiv_symm_apply_app_app 📖mathematicalHomObj.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
category
rightOp
CategoryTheory.coyoneda
CategoryTheory.NatTrans.app
functorHom
DFunLike.coe
Equiv
HomObj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
functorHomEquiv
map
Opposite.op
functorHom_ext 📖HomObj.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
category
rightOp
CategoryTheory.coyoneda
HomObj.ext
functorHom_ext_iff 📖mathematicalHomObj.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
category
rightOp
CategoryTheory.coyoneda
functorHom_ext
homObjEquiv_apply_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
DFunLike.coe
Equiv
HomObj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
homObjEquiv
obj
HomObj.app
homObjEquiv_symm_apply_app 📖mathematicalHomObj.app
CategoryTheory.types
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
HomObj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homObjEquiv
CategoryTheory.NatTrans.app
obj
homObjFunctor_map_app 📖mathematicalHomObj.app
Opposite.unop
CategoryTheory.Functor
CategoryTheory.types
map
Opposite
CategoryTheory.Category.opposite
category
homObjFunctor
CategoryTheory.NatTrans.app
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homObjFunctor_obj 📖mathematicalobj
Opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Category.opposite
category
homObjFunctor
HomObj
Opposite.unop
natTransEquiv_apply_app 📖mathematicalCategoryTheory.NatTrans.app
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
functorHom
EquivLike.toFunLike
Equiv.instEquivLike
natTransEquiv
HomObj.app
Opposite.unop
obj
Opposite
CategoryTheory.Category.opposite
rightOp
CategoryTheory.coyoneda
CategoryTheory.CategoryStruct.id
Opposite.op
natTransEquiv_symm_apply_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
functorHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
natTransEquiv
HomObj.ofNatTrans
Opposite.unop
obj
Opposite
CategoryTheory.Category.opposite
rightOp
CategoryTheory.coyoneda

CategoryTheory.Functor.HomObj

Definitions

NameCategoryTheorems
app 📖CompOp
21 mathmath: CategoryTheory.Functor.functorHomEquiv_apply_app, CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Functor.homObjEquiv_apply_app, comp_app, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.FunctorToTypes.rightAdj_map_app, CategoryTheory.Functor.homObjFunctor_map_app, CategoryTheory.FunctorToTypes.rightAdj_map_app_app, CategoryTheory.Functor.functorHom_ext_iff, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, map_app, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.FunctorToTypes.rightAdj_obj_map_app, ofNatTrans_app, naturality_assoc, ext_iff, congr_app, naturality, id_app, CategoryTheory.Functor.functorHomEquiv_symm_apply_app_app
comp 📖CompOp
1 mathmath: comp_app
id 📖CompOp
1 mathmath: id_app
map 📖CompOp
1 mathmath: map_app
ofNatTrans 📖CompOp
4 mathmath: CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, ofNatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
comp_app 📖mathematicalapp
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
congr_app 📖mathematicalapp
ext 📖app
ext_iff 📖mathematicalappext
id_app 📖mathematicalapp
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
map_app 📖mathematicalapp
map
CategoryTheory.NatTrans.app
CategoryTheory.types
naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
app
CategoryTheory.types
naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
app
CategoryTheory.types
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality
ofNatTrans_app 📖mathematicalapp
ofNatTrans
CategoryTheory.NatTrans.app

---

← Back to Index