| Name | Category | Theorems |
colimitIsoColimitGrothendieck 📖 | CompOp | 4 mathmath: ι_colimitIsoColimitGrothendieck_inv_assoc, ι_colimitIsoColimitGrothendieck_hom, ι_colimitIsoColimitGrothendieck_hom_assoc, ι_colimitIsoColimitGrothendieck_inv
|
isPointwiseLeftKanExtensionLeftKanExtensionUnit 📖 | CompOp | — |
isPointwiseRightKanExtensionRanCounit 📖 | CompOp | — |
lan 📖 | CompOp | 30 mathmath: CategoryTheory.preservesFiniteLimits_iff_lan_preservesFiniteLimits, CategoryTheory.lan_preservesFiniteLimits_of_flat, instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.natTrans_app_uliftYoneda_obj, instIsLeftKanExtensionObjLanAppLanUnit, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoAppLanUnit, CategoryTheory.TwoSquare.isIso_lanBaseChange_app, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, lanCompColimIso_inv_app, CategoryTheory.lan_preservesFiniteLimits_of_preservesFiniteLimits, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.TwoSquare.instIsIsoFunctorLanBaseChangeOfGuitartExact, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, isIso_lanAdjunction_homEquiv_symm_iff, lanAdjunction_unit, lanCompIsoOfPreserves_inv_app, CategoryTheory.flat_iff_lan_flat, CategoryTheory.lan_flat_of_flat, lanCompIsoOfPreserves_hom_app, instIsIsoAppLanUnit_1, coreflective', CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, isIso_lanAdjunction_counit_app_iff, coreflective, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, lanCompColimIso_hom_app
|
lanAdjunction 📖 | CompOp | 11 mathmath: instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, isIso_lanAdjunction_homEquiv_symm_iff, lanAdjunction_unit, coreflective', CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, isIso_lanAdjunction_counit_app_iff, lanUnit_app_app_lanAdjunction_counit_app_app_assoc
|
lanCompColimIso 📖 | CompOp | 2 mathmath: lanCompColimIso_inv_app, lanCompColimIso_hom_app
|
lanUnit 📖 | CompOp | 15 mathmath: instIsLeftKanExtensionObjLanAppLanUnit, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoAppLanUnit, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, lanCompColimIso_inv_app, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, lanAdjunction_unit, instIsIsoAppLanUnit_1, CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, coreflective, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, lanCompColimIso_hom_app
|
leftKanExtensionIsoFiberwiseColimit 📖 | CompOp | 2 mathmath: leftKanExtensionIsoFiberwiseColimit_hom_app, leftKanExtensionIsoFiberwiseColimit_inv_app
|
leftKanExtensionObjIsoColimit 📖 | CompOp | 9 mathmath: leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, ι_leftKanExtensionObjIsoColimit_inv, ι_leftKanExtensionObjIsoColimit_inv_assoc, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, leftKanExtensionIsoFiberwiseColimit_hom_app, ι_leftKanExtensionObjIsoColimit_hom, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, ι_leftKanExtensionObjIsoColimit_hom_assoc, leftKanExtensionIsoFiberwiseColimit_inv_app
|
ran 📖 | CompOp | 29 mathmath: instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, CategoryTheory.ran_isSheaf_of_isCocontinuous, instIsIsoAppRanCounit, reflective', ranCompLimIso_inv_app, sheafAdjunctionCocontinuous_counit_app_val, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, ranCompIsoOfPreserves_inv_app, ranCompIsoOfPreserves_hom_app, isIso_ranAdjunction_unit_app_iff, ranObjObjIsoLimit_inv_π_assoc, isIso_ranAdjunction_homEquiv_iff, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, ranObjObjIsoLimit_hom_π_assoc, instIsRightKanExtensionObjRanAppRanCounit, sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, ranCounit_app_app_ranAdjunction_unit_app_app, reflective, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, ranCompLimIso_hom_app, sheafAdjunctionCocontinuous_homEquiv_apply_val, ranAdjunction_unit_app, sheafAdjunctionCocontinuous_unit_app_val, instIsIsoAppRanCounit_1
|
ranAdjunction 📖 | CompOp | 13 mathmath: instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, reflective', sheafAdjunctionCocontinuous_counit_app_val, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, isIso_ranAdjunction_unit_app_iff, isIso_ranAdjunction_homEquiv_iff, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, ranCounit_app_app_ranAdjunction_unit_app_app, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, sheafAdjunctionCocontinuous_homEquiv_apply_val, ranAdjunction_unit_app, sheafAdjunctionCocontinuous_unit_app_val
|
ranCompLimIso 📖 | CompOp | 2 mathmath: ranCompLimIso_inv_app, ranCompLimIso_hom_app
|
ranCounit 📖 | CompOp | 17 mathmath: instIsIsoAppRanCounit, ranCompLimIso_inv_app, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, ranObjObjIsoLimit_inv_π_assoc, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, ranObjObjIsoLimit_hom_π_assoc, instIsRightKanExtensionObjRanAppRanCounit, ranCounit_app_app_ranAdjunction_unit_app_app, reflective, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, ranCompLimIso_hom_app, ranAdjunction_unit_app, instIsIsoAppRanCounit_1
|
ranObjObjIsoLimit 📖 | CompOp | 4 mathmath: ranObjObjIsoLimit_inv_π_assoc, ranObjObjIsoLimit_hom_π_assoc, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π
|