Documentation Verification Report

Adjunction

📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/Adjunction.lean

Statistics

MetricCount
DefinitionscolimitIsoColimitGrothendieck, isPointwiseLeftKanExtensionLeftKanExtensionUnit, isPointwiseRightKanExtensionRanCounit, lan, lanAdjunction, lanCompColimIso, lanUnit, leftKanExtensionIsoFiberwiseColimit, leftKanExtensionObjIsoColimit, ran, ranAdjunction, ranCompLimIso, ranCounit, ranObjObjIsoLimit
14
Theoremscoreflective, coreflective', hasColimit_map_comp_ι_comp_grothendieckProj, instHasColimitGrothendieckFunctorCompGrothendieckProj, instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, instIsIsoAppLanUnit, instIsIsoAppLanUnit_1, instIsIsoAppRanCounit, instIsIsoAppRanCounit_1, instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, instIsLeftKanExtensionObjLanAppLanUnit, instIsRightKanExtensionObjRanAppRanCounit, isIso_lanAdjunction_counit_app_iff, isIso_lanAdjunction_homEquiv_symm_iff, isIso_ranAdjunction_homEquiv_iff, isIso_ranAdjunction_unit_app_iff, lanAdjunction_counit_app, lanAdjunction_unit, lanCompColimIso_hom_app, lanCompColimIso_inv_app, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, leftKanExtensionIsoFiberwiseColimit_hom_app, leftKanExtensionIsoFiberwiseColimit_inv_app, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, ranAdjunction_counit, ranAdjunction_unit_app, ranCompLimIso_hom_app, ranCompLimIso_inv_app, ranCounit_app_app_ranAdjunction_unit_app_app, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_hom_π_assoc, ranObjObjIsoLimit_inv_π, ranObjObjIsoLimit_inv_π_assoc, reflective, reflective', ι_colimitIsoColimitGrothendieck_hom, ι_colimitIsoColimitGrothendieck_hom_assoc, ι_colimitIsoColimitGrothendieck_inv, ι_colimitIsoColimitGrothendieck_inv_assoc, ι_leftKanExtensionObjIsoColimit_hom, ι_leftKanExtensionObjIsoColimit_hom_assoc, ι_leftKanExtensionObjIsoColimit_inv, ι_leftKanExtensionObjIsoColimit_inv_assoc
51
Total65

CategoryTheory.Functor

Definitions

NameCategoryTheorems
colimitIsoColimitGrothendieck 📖CompOp
4 mathmath: ι_colimitIsoColimitGrothendieck_inv_assoc, ι_colimitIsoColimitGrothendieck_hom, ι_colimitIsoColimitGrothendieck_hom_assoc, ι_colimitIsoColimitGrothendieck_inv
isPointwiseLeftKanExtensionLeftKanExtensionUnit 📖CompOp
isPointwiseRightKanExtensionRanCounit 📖CompOp
lan 📖CompOp
30 mathmath: CategoryTheory.preservesFiniteLimits_iff_lan_preservesFiniteLimits, CategoryTheory.lan_preservesFiniteLimits_of_flat, instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.natTrans_app_uliftYoneda_obj, instIsLeftKanExtensionObjLanAppLanUnit, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoAppLanUnit, CategoryTheory.TwoSquare.isIso_lanBaseChange_app, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, lanCompColimIso_inv_app, CategoryTheory.lan_preservesFiniteLimits_of_preservesFiniteLimits, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.TwoSquare.instIsIsoFunctorLanBaseChangeOfGuitartExact, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, isIso_lanAdjunction_homEquiv_symm_iff, lanAdjunction_unit, lanCompIsoOfPreserves_inv_app, CategoryTheory.flat_iff_lan_flat, CategoryTheory.lan_flat_of_flat, lanCompIsoOfPreserves_hom_app, instIsIsoAppLanUnit_1, coreflective', CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, isIso_lanAdjunction_counit_app_iff, coreflective, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, lanCompColimIso_hom_app
lanAdjunction 📖CompOp
11 mathmath: instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, isIso_lanAdjunction_homEquiv_symm_iff, lanAdjunction_unit, coreflective', CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, isIso_lanAdjunction_counit_app_iff, lanUnit_app_app_lanAdjunction_counit_app_app_assoc
lanCompColimIso 📖CompOp
2 mathmath: lanCompColimIso_inv_app, lanCompColimIso_hom_app
lanUnit 📖CompOp
15 mathmath: instIsLeftKanExtensionObjLanAppLanUnit, lanUnit_app_app_lanAdjunction_counit_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, instIsIsoAppLanUnit, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, lanCompColimIso_inv_app, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, lanAdjunction_unit, instIsIsoAppLanUnit_1, CategoryTheory.TwoSquare.lanBaseChange_app, lanAdjunction_counit_app, coreflective, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, lanCompColimIso_hom_app
leftKanExtensionIsoFiberwiseColimit 📖CompOp
2 mathmath: leftKanExtensionIsoFiberwiseColimit_hom_app, leftKanExtensionIsoFiberwiseColimit_inv_app
leftKanExtensionObjIsoColimit 📖CompOp
9 mathmath: leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, ι_leftKanExtensionObjIsoColimit_inv, ι_leftKanExtensionObjIsoColimit_inv_assoc, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, leftKanExtensionIsoFiberwiseColimit_hom_app, ι_leftKanExtensionObjIsoColimit_hom, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, ι_leftKanExtensionObjIsoColimit_hom_assoc, leftKanExtensionIsoFiberwiseColimit_inv_app
ran 📖CompOp
29 mathmath: instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, CategoryTheory.ran_isSheaf_of_isCocontinuous, instIsIsoAppRanCounit, reflective', ranCompLimIso_inv_app, sheafAdjunctionCocontinuous_counit_app_val, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, ranCompIsoOfPreserves_inv_app, ranCompIsoOfPreserves_hom_app, isIso_ranAdjunction_unit_app_iff, ranObjObjIsoLimit_inv_π_assoc, isIso_ranAdjunction_homEquiv_iff, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, sheafPushforwardCocontinuousCompSheafToPresheafIso_inv, ranObjObjIsoLimit_hom_π_assoc, instIsRightKanExtensionObjRanAppRanCounit, sheafPushforwardCocontinuousCompSheafToPresheafIso_hom, ranCounit_app_app_ranAdjunction_unit_app_app, reflective, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, ranCompLimIso_hom_app, sheafAdjunctionCocontinuous_homEquiv_apply_val, ranAdjunction_unit_app, sheafAdjunctionCocontinuous_unit_app_val, instIsIsoAppRanCounit_1
ranAdjunction 📖CompOp
13 mathmath: instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, reflective', sheafAdjunctionCocontinuous_counit_app_val, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, isIso_ranAdjunction_unit_app_iff, isIso_ranAdjunction_homEquiv_iff, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, ranCounit_app_app_ranAdjunction_unit_app_app, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, sheafAdjunctionCocontinuous_homEquiv_apply_val, ranAdjunction_unit_app, sheafAdjunctionCocontinuous_unit_app_val
ranCompLimIso 📖CompOp
2 mathmath: ranCompLimIso_inv_app, ranCompLimIso_hom_app
ranCounit 📖CompOp
17 mathmath: instIsIsoAppRanCounit, ranCompLimIso_inv_app, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, ranObjObjIsoLimit_inv_π_assoc, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, ranObjObjIsoLimit_hom_π_assoc, instIsRightKanExtensionObjRanAppRanCounit, ranCounit_app_app_ranAdjunction_unit_app_app, reflective, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π, ranAdjunction_counit, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, ranCompLimIso_hom_app, ranAdjunction_unit_app, instIsIsoAppRanCounit_1
ranObjObjIsoLimit 📖CompOp
4 mathmath: ranObjObjIsoLimit_inv_π_assoc, ranObjObjIsoLimit_hom_π_assoc, ranObjObjIsoLimit_hom_π, ranObjObjIsoLimit_inv_π

Theorems

NameKindAssumesProvesValidatesDepends On
coreflective 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
id
comp
lan
instHasLeftKanExtension
obj
whiskeringLeft
lanUnit
CategoryTheory.NatIso.isIso_of_isIso_app
instHasLeftKanExtension
instIsIsoAppLanUnit_1
coreflective' 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
id
comp
lan
instHasLeftKanExtension
obj
whiskeringLeft
CategoryTheory.Adjunction.unit
lanAdjunction
CategoryTheory.NatIso.isIso_of_isIso_app
instHasLeftKanExtension
instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension
hasColimit_map_comp_ι_comp_grothendieckProj 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.Limits.HasColimit
CategoryTheory.Bundled.α
CategoryTheory.Category
obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Cat.str
comp
CategoryTheory.Cat.Hom.toFunctor
map
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
CategoryTheory.Grothendieck.ι
CategoryTheory.CostructuredArrow.grothendieckProj
CategoryTheory.Limits.hasColimit_of_iso
instHasColimitGrothendieckFunctorCompGrothendieckProj 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.Limits.HasColimit
CategoryTheory.Grothendieck
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Grothendieck.instCategory
comp
CategoryTheory.CostructuredArrow.grothendieckProj
CategoryTheory.Limits.hasColimit_of_hasColimit_fiberwiseColimit_of_hasColimit
hasColimit_map_comp_ι_comp_grothendieckProj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension 📖mathematicalHasPointwiseRightKanExtension
HasRightKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
category
obj
comp
ran
whiskeringLeft
id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
ranAdjunction
ranAdjunction_counit
instIsIsoAppRanCounit_1
instIsIsoAppLanUnit 📖mathematicalHasPointwiseLeftKanExtension
HasLeftKanExtension
CategoryTheory.IsIso
obj
CategoryTheory.Functor
category
id
comp
lan
whiskeringLeft
CategoryTheory.NatTrans.app
lanUnit
LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app
instHasLeftKanExtension
instIsIsoAppLanUnit_1 📖mathematicalHasPointwiseLeftKanExtension
HasLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
category
obj
id
comp
lan
whiskeringLeft
CategoryTheory.NatTrans.app
lanUnit
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoAppLanUnit
instIsIsoAppRanCounit 📖mathematicalHasPointwiseRightKanExtension
HasRightKanExtension
CategoryTheory.IsIso
obj
CategoryTheory.Functor
category
comp
ran
whiskeringLeft
id
CategoryTheory.NatTrans.app
ranCounit
RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app
instIsIsoAppRanCounit_1 📖mathematicalHasPointwiseRightKanExtension
HasRightKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
category
obj
comp
ran
whiskeringLeft
id
CategoryTheory.NatTrans.app
ranCounit
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoAppRanCounit
instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension 📖mathematicalHasPointwiseLeftKanExtension
HasLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
category
obj
id
comp
lan
whiskeringLeft
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
lanAdjunction
lanAdjunction_unit
instIsIsoAppLanUnit_1
instIsLeftKanExtensionObjLanAppLanUnit 📖mathematicalHasLeftKanExtensionIsLeftKanExtension
obj
CategoryTheory.Functor
category
lan
id
CategoryTheory.NatTrans.app
comp
whiskeringLeft
lanUnit
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
instIsRightKanExtensionObjRanAppRanCounit 📖mathematicalHasRightKanExtensionIsRightKanExtension
obj
CategoryTheory.Functor
category
ran
id
CategoryTheory.NatTrans.app
comp
whiskeringLeft
ranCounit
instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit
isIso_lanAdjunction_counit_app_iff 📖mathematicalHasLeftKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
obj
comp
whiskeringLeft
lan
id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
lanAdjunction
IsLeftKanExtension
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isLeftKanExtension_iff_isIso
lanUnit_app_whiskerLeft_lanAdjunction_counit_app
instIsLeftKanExtensionObjLanAppLanUnit
isIso_lanAdjunction_homEquiv_symm_iff 📖mathematicalHasLeftKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
obj
lan
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
whiskeringLeft
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
lanAdjunction
IsLeftKanExtension
isLeftKanExtension_iff_isIso
instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
descOfIsLeftKanExtension_fac
isIso_ranAdjunction_homEquiv_iff 📖mathematicalHasRightKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
obj
ran
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
whiskeringLeft
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
ranAdjunction
IsRightKanExtension
isRightKanExtension_iff_isIso
instIsRightKanExtensionObjRanAppRanCounit
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
liftOfIsRightKanExtension_fac
isIso_ranAdjunction_unit_app_iff 📖mathematicalHasRightKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
obj
id
comp
whiskeringLeft
ran
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
ranAdjunction
IsRightKanExtension
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
isRightKanExtension_iff_isIso
ranCounit_app_whiskerLeft_ranAdjunction_unit_app
instIsRightKanExtensionObjRanAppRanCounit
lanAdjunction_counit_app 📖mathematicalHasLeftKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
obj
whiskeringLeft
lan
id
CategoryTheory.Adjunction.counit
lanAdjunction
descOfIsLeftKanExtension
lanUnit
instIsLeftKanExtensionObjLanAppLanUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
lanAdjunction_unit 📖mathematicalHasLeftKanExtensionCategoryTheory.Adjunction.unit
CategoryTheory.Functor
category
lan
obj
whiskeringLeft
lanAdjunction
lanUnit
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
lanCompColimIso_hom_app 📖mathematicalHasLeftKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
lan
CategoryTheory.Limits.colim
CategoryTheory.Iso.hom
lanCompColimIso
CategoryTheory.Limits.colimit
obj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
colimitIsoOfIsLeftKanExtension
id
whiskeringLeft
lanUnit
instIsLeftKanExtensionObjLanAppLanUnit
lanCompColimIso_inv_app 📖mathematicalHasLeftKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
CategoryTheory.Limits.colim
comp
lan
CategoryTheory.Iso.inv
lanCompColimIso
CategoryTheory.Limits.colimit
obj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
colimitIsoOfIsLeftKanExtension
id
whiskeringLeft
lanUnit
instIsLeftKanExtensionObjLanAppLanUnit
lanUnit_app_app_lanAdjunction_counit_app_app 📖mathematicalHasLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
id
comp
lan
whiskeringLeft
CategoryTheory.NatTrans.app
lanUnit
CategoryTheory.Adjunction.counit
lanAdjunction
CategoryTheory.CategoryStruct.id
CategoryTheory.congr_app
lanUnit_app_whiskerLeft_lanAdjunction_counit_app
lanUnit_app_app_lanAdjunction_counit_app_app_assoc 📖mathematicalHasLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
whiskeringLeft
lan
comp
CategoryTheory.NatTrans.app
id
lanUnit
CategoryTheory.Adjunction.counit
lanAdjunction
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
lanUnit_app_app_lanAdjunction_counit_app_app
lanUnit_app_whiskerLeft_lanAdjunction_counit_app 📖mathematicalHasLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
obj
id
comp
lan
whiskeringLeft
CategoryTheory.NatTrans.app
lanUnit
whiskerLeft
CategoryTheory.Adjunction.counit
lanAdjunction
CategoryTheory.CategoryStruct.id
descOfIsLeftKanExtension_fac
instIsLeftKanExtensionObjLanAppLanUnit
lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc 📖mathematicalHasLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
obj
whiskeringLeft
lan
CategoryTheory.NatTrans.app
id
lanUnit
whiskerLeft
CategoryTheory.Adjunction.counit
lanAdjunction
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
lanUnit_app_whiskerLeft_lanAdjunction_counit_app
leftKanExtensionIsoFiberwiseColimit_hom_app 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.NatTrans.app
leftKanExtension
CategoryTheory.Limits.fiberwiseColimit
CategoryTheory.CostructuredArrow.functor
comp
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
CategoryTheory.CostructuredArrow.grothendieckProj
hasColimit_map_comp_ι_comp_grothendieckProj
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftKanExtensionIsoFiberwiseColimit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.Cat.str
CategoryTheory.Cat.of
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Grothendieck.ι
CategoryTheory.Limits.hasColimit_ι_comp
leftKanExtensionObjIsoColimit
CategoryTheory.Iso.inv
CategoryTheory.Limits.HasColimit.isoOfNatIso
isoWhiskerRight
CategoryTheory.CostructuredArrow.ιCompGrothendieckProj
hasColimit_map_comp_ι_comp_grothendieckProj
leftKanExtensionIsoFiberwiseColimit_inv_app 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Limits.fiberwiseColimit
CategoryTheory.CostructuredArrow.functor
comp
CategoryTheory.Grothendieck
CategoryTheory.Grothendieck.instCategory
CategoryTheory.CostructuredArrow.grothendieckProj
hasColimit_map_comp_ι_comp_grothendieckProj
leftKanExtension
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftKanExtensionIsoFiberwiseColimit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.Cat.str
CategoryTheory.Cat.of
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Grothendieck.ι
CategoryTheory.Limits.hasColimit_ι_comp
CategoryTheory.CostructuredArrow.proj
obj
CategoryTheory.Iso.hom
CategoryTheory.Limits.HasColimit.isoOfNatIso
isoWhiskerRight
CategoryTheory.CostructuredArrow.ιCompGrothendieckProj
leftKanExtensionObjIsoColimit
hasColimit_map_comp_ι_comp_grothendieckProj
leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
leftKanExtension
instHasLeftKanExtension
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Iso.hom
leftKanExtensionObjIsoColimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.CategoryStruct.id
instHasLeftKanExtension
map_id
CategoryTheory.Category.id_comp
leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom
leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftKanExtension
instHasLeftKanExtension
CategoryTheory.NatTrans.app
comp
leftKanExtensionUnit
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.hom
leftKanExtensionObjIsoColimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.CategoryStruct.id
instHasLeftKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom
leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
comp
leftKanExtension
instHasLeftKanExtension
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Comma.right
map
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
leftKanExtensionObjIsoColimit
CategoryTheory.Limits.colimit.ι
LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom
instHasLeftKanExtension
ranAdjunction_counit 📖mathematicalHasRightKanExtensionCategoryTheory.Adjunction.counit
CategoryTheory.Functor
category
obj
whiskeringLeft
ran
ranAdjunction
ranCounit
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.id_comp
ranAdjunction_unit_app 📖mathematicalHasRightKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
id
comp
obj
whiskeringLeft
ran
CategoryTheory.Adjunction.unit
ranAdjunction
liftOfIsRightKanExtension
ranCounit
instIsRightKanExtensionObjRanAppRanCounit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ranCompLimIso_hom_app 📖mathematicalHasRightKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
ran
CategoryTheory.Limits.lim
CategoryTheory.Iso.hom
ranCompLimIso
CategoryTheory.Limits.limit
obj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
limitIsoOfIsRightKanExtension
whiskeringLeft
id
ranCounit
instIsRightKanExtensionObjRanAppRanCounit
ranCompLimIso_inv_app 📖mathematicalHasRightKanExtensionCategoryTheory.NatTrans.app
CategoryTheory.Functor
category
CategoryTheory.Limits.lim
comp
ran
CategoryTheory.Iso.inv
ranCompLimIso
CategoryTheory.Limits.limit
obj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
limitIsoOfIsRightKanExtension
whiskeringLeft
id
ranCounit
instIsRightKanExtensionObjRanAppRanCounit
ranCounit_app_app_ranAdjunction_unit_app_app 📖mathematicalHasRightKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
id
comp
whiskeringLeft
ran
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
ranAdjunction
ranCounit
CategoryTheory.CategoryStruct.id
CategoryTheory.congr_app
ranCounit_app_whiskerLeft_ranAdjunction_unit_app
ranCounit_app_app_ranAdjunction_unit_app_app_assoc 📖mathematicalHasRightKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
ran
whiskeringLeft
CategoryTheory.NatTrans.app
id
comp
CategoryTheory.Adjunction.unit
ranAdjunction
ranCounit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ranCounit_app_app_ranAdjunction_unit_app_app
ranCounit_app_whiskerLeft_ranAdjunction_unit_app 📖mathematicalHasRightKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
obj
id
whiskeringLeft
ran
whiskerLeft
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
ranAdjunction
ranCounit
CategoryTheory.CategoryStruct.id
liftOfIsRightKanExtension_fac
instIsRightKanExtensionObjRanAppRanCounit
ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc 📖mathematicalHasRightKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
obj
ran
whiskeringLeft
whiskerLeft
CategoryTheory.NatTrans.app
id
CategoryTheory.Adjunction.unit
ranAdjunction
ranCounit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ranCounit_app_whiskerLeft_ranAdjunction_unit_app
ranObjObjIsoLimit_hom_π 📖mathematicalHasRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
ran
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.hom
ranObjObjIsoLimit
CategoryTheory.Limits.limit.π
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
id
map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
whiskeringLeft
ranCounit
RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π
ranObjObjIsoLimit_hom_π_assoc 📖mathematicalHasRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor
category
ran
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.hom
ranObjObjIsoLimit
CategoryTheory.Limits.limit.π
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
map
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
whiskeringLeft
id
ranCounit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ranObjObjIsoLimit_hom_π
ranObjObjIsoLimit_inv_π 📖mathematicalHasRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
obj
CategoryTheory.Functor
category
ran
id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
CategoryTheory.Iso.inv
ranObjObjIsoLimit
map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
whiskeringLeft
ranCounit
CategoryTheory.Limits.limit.π
RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π
ranObjObjIsoLimit_inv_π_assoc 📖mathematicalHasRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
obj
CategoryTheory.Functor
category
ran
CategoryTheory.Iso.inv
ranObjObjIsoLimit
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
whiskeringLeft
id
ranCounit
CategoryTheory.Limits.limit.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ranObjObjIsoLimit_inv_π
reflective 📖mathematicalHasPointwiseRightKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
comp
ran
instHasRightKanExtension
obj
whiskeringLeft
id
ranCounit
CategoryTheory.NatIso.isIso_of_isIso_app
instHasRightKanExtension
instIsIsoAppRanCounit_1
reflective' 📖mathematicalHasPointwiseRightKanExtensionCategoryTheory.IsIso
CategoryTheory.Functor
category
comp
ran
instHasRightKanExtension
obj
whiskeringLeft
id
CategoryTheory.Adjunction.counit
ranAdjunction
CategoryTheory.NatIso.isIso_of_isIso_app
instHasRightKanExtension
instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension
ι_colimitIsoColimitGrothendieck_hom 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Grothendieck
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Grothendieck.instCategory
comp
CategoryTheory.CostructuredArrow.grothendieckProj
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
colimitIsoColimitGrothendieck
CategoryTheory.CategoryStruct.id
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Iso.eq_comp_inv
ι_colimitIsoColimitGrothendieck_inv
ι_colimitIsoColimitGrothendieck_hom_assoc 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ι
CategoryTheory.Grothendieck
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Grothendieck.instCategory
comp
CategoryTheory.CostructuredArrow.grothendieckProj
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Iso.hom
colimitIsoColimitGrothendieck
CategoryTheory.CategoryStruct.id
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimitIsoColimitGrothendieck_hom
ι_colimitIsoColimitGrothendieck_inv 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Grothendieck
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Grothendieck.instCategory
comp
CategoryTheory.CostructuredArrow.grothendieckProj
CategoryTheory.Limits.colimit
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
colimitIsoColimitGrothendieck
CategoryTheory.CostructuredArrow
CategoryTheory.Grothendieck.base
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Grothendieck.fiber
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.hasColimit_ι_comp
hasColimit_map_comp_ι_comp_grothendieckProj
instHasLeftKanExtension
CategoryTheory.Iso.trans_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_inv_assoc
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom_assoc
map_id
ι_leftKanExtensionObjIsoColimit_inv_assoc
CategoryTheory.Limits.colimit.w_assoc
ι_colimitIsoOfIsLeftKanExtension_hom
CategoryTheory.Category.id_comp
ι_colimitIsoColimitGrothendieck_inv_assoc 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Grothendieck
CategoryTheory.CostructuredArrow.functor
CategoryTheory.Grothendieck.instCategory
CategoryTheory.CostructuredArrow.grothendieckProj
CategoryTheory.Limits.colimit
comp
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Limits.colimit.ι
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Iso.inv
colimitIsoColimitGrothendieck
CategoryTheory.CostructuredArrow
CategoryTheory.Grothendieck.base
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Grothendieck.fiber
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitGrothendieckFunctorCompGrothendieckProj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimitIsoColimitGrothendieck_inv
ι_leftKanExtensionObjIsoColimit_hom 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
comp
leftKanExtension
instHasLeftKanExtension
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Comma.right
map
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
leftKanExtensionObjIsoColimit
CategoryTheory.Limits.colimit.ι
LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom
instHasLeftKanExtension
ι_leftKanExtensionObjIsoColimit_hom_assoc 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
leftKanExtension
instHasLeftKanExtension
CategoryTheory.NatTrans.app
comp
leftKanExtensionUnit
CategoryTheory.Comma.right
map
CategoryTheory.Comma.hom
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.hom
leftKanExtensionObjIsoColimit
CategoryTheory.Limits.colimit.ι
instHasLeftKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_leftKanExtensionObjIsoColimit_hom
ι_leftKanExtensionObjIsoColimit_inv 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.colimit
leftKanExtension
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
leftKanExtensionObjIsoColimit
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
leftKanExtensionUnit
map
CategoryTheory.Comma.hom
instHasLeftKanExtension
LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv
ι_leftKanExtensionObjIsoColimit_inv_assoc 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.colimit
comp
CategoryTheory.Limits.colimit.ι
leftKanExtension
CategoryTheory.Iso.inv
leftKanExtensionObjIsoColimit
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
CategoryTheory.NatTrans.app
leftKanExtensionUnit
map
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_leftKanExtensionObjIsoColimit_inv

---

← Back to Index