Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/Basic.lean

Statistics

MetricCount
DefinitionsHasLeftKanExtension, HasRightKanExtension, IsLeftKanExtension, IsRightKanExtension, LeftExtension, isUniversalEquivOfIso₂, isUniversalOfPrecomp₂, isUniversalPostcomp₁Equiv, isUniversalPrecompEquiv, isUniversalPrecomp₂, isUniversalPrecomp₂Equiv, mk, postcompose₂, postcompose₂ObjMkIso, postcomp₁, precomp, precomp₂, RightExtension, isUniversalEquivOfIso₂, isUniversalPostcomp₁Equiv, isUniversalPrecompEquiv, mk, postcompose₂, postcompose₂ObjMkIso, postcomp₁, precomp, coconeOfIsLeftKanExtension, colimitIsoOfIsLeftKanExtension, coneOfIsRightKanExtension, descOfIsLeftKanExtension, homEquivOfIsLeftKanExtension, homEquivOfIsRightKanExtension, isColimitCoconeOfIsLeftKanExtension, isLimitConeOfIsRightKanExtension, isUniversalOfIsLeftKanExtension, isUniversalOfIsRightKanExtension, leftExtensionEquivalenceOfIso₁, leftExtensionEquivalenceOfIso₂, leftKanExtension, leftKanExtensionUnique, leftKanExtensionUniqueOfIso, leftKanExtensionUnit, liftOfIsRightKanExtension, limitIsoOfIsRightKanExtension, rightExtensionEquivalenceOfIso₁, rightExtensionEquivalenceOfIso₂, rightKanExtension, rightKanExtensionCounit, rightKanExtensionUnique, rightKanExtensionUniqueOfIso
50
Theoremsmk, mk, nonempty_isUniversal, nonempty_isUniversal, mk_hom, mk_left_as, mk_right, postcompose₂ObjMkIso_hom_right_app, postcompose₂ObjMkIso_inv_right_app, postcompose₂_map_left, postcompose₂_map_right_app, postcompose₂_obj_hom_app, postcompose₂_obj_left, postcompose₂_obj_right_map, postcompose₂_obj_right_obj, postcomp₁_map_left, postcomp₁_map_right_app, postcomp₁_obj_hom_app, postcomp₁_obj_left, postcomp₁_obj_right_map, postcomp₁_obj_right_obj, precomp_map_left, precomp_map_right, precomp_obj_hom_app, precomp_obj_left, precomp_obj_right, precomp₂_map_left, precomp₂_map_right, precomp₂_obj_hom_app, precomp₂_obj_left, precomp₂_obj_right, mk_hom, mk_left, mk_right_as, postcompose₂ObjMkIso_hom_left_app, postcompose₂ObjMkIso_inv_left_app, postcompose₂_map_left_app, postcompose₂_map_right, postcompose₂_obj_hom_app, postcompose₂_obj_left_map, postcompose₂_obj_left_obj, postcompose₂_obj_right, postcomp₁_map_left_app, postcomp₁_map_right, postcomp₁_obj_hom_app, postcomp₁_obj_left_map, postcomp₁_obj_left_obj, postcomp₁_obj_right, precomp_map_left, precomp_map_right, precomp_obj_hom_app, precomp_obj_left, precomp_obj_right, coconeOfIsLeftKanExtension_pt, coconeOfIsLeftKanExtension_ι, coneOfIsRightKanExtension_pt, coneOfIsRightKanExtension_π, descOfIsLeftKanExtension_fac, descOfIsLeftKanExtension_fac_app, descOfIsLeftKanExtension_fac_app_assoc, descOfIsLeftKanExtension_fac_assoc, hasLeftExtension_iff_of_iso₁, hasLeftExtension_iff_of_iso₂, hasLeftExtension_iff_postcomp₁, hasRightExtension_iff_of_iso₁, hasRightExtension_iff_of_iso₂, hasRightExtension_iff_postcomp₁, homEquivOfIsLeftKanExtension_apply_app, homEquivOfIsLeftKanExtension_symm_apply, homEquivOfIsRightKanExtension_apply_app, homEquivOfIsRightKanExtension_symm_apply, hom_ext_of_isLeftKanExtension, hom_ext_of_isRightKanExtension, instIsEquivalenceLeftExtensionCompPrecomp, instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, instIsEquivalenceRightExtensionCompPrecomp, instIsEquivalenceRightExtensionPostcomp₁OfIsIso, instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit, instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit, isColimitCoconeOfIsLeftKanExtension_desc, isLeftKanExtensionAlongEquivalence, isLeftKanExtensionAlongEquivalence', isLeftKanExtensionId, isLeftKanExtension_iff_isIso, isLeftKanExtension_iff_of_iso, isLeftKanExtension_iff_of_iso₂, isLeftKanExtension_iff_postcompose, isLeftKanExtension_iff_postcomp₁, isLeftKanExtension_iff_precomp, isLeftKanExtension_of_iso, isLimitConeOfIsRightKanExtension_lift, isRightKanExtensionAlongEquivalence, isRightKanExtensionAlongEquivalence', isRightKanExtensionId, isRightKanExtension_iff_isIso, isRightKanExtension_iff_of_iso, isRightKanExtension_iff_of_iso₂, isRightKanExtension_iff_postcomp₁, isRightKanExtension_iff_precomp, isRightKanExtension_of_iso, leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, leftExtensionEquivalenceOfIso₁_functor_map_left, leftExtensionEquivalenceOfIso₁_functor_map_right, leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, leftExtensionEquivalenceOfIso₁_functor_obj_left, leftExtensionEquivalenceOfIso₁_functor_obj_right, leftExtensionEquivalenceOfIso₁_inverse_map_left, leftExtensionEquivalenceOfIso₁_inverse_map_right, leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, leftExtensionEquivalenceOfIso₁_inverse_obj_left, leftExtensionEquivalenceOfIso₁_inverse_obj_right, leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, leftKanExtensionUniqueOfIso_hom, leftKanExtensionUniqueOfIso_inv, leftKanExtensionUnique_hom, leftKanExtensionUnique_inv, leftKanExtension_hom_ext, leftKanExtension_hom_ext_iff, liftOfIsRightKanExtension_fac, liftOfIsRightKanExtension_fac_app, liftOfIsRightKanExtension_fac_app_assoc, liftOfIsRightKanExtension_fac_assoc, limitIsoOfIsRightKanExtension_hom_π, limitIsoOfIsRightKanExtension_hom_π_assoc, limitIsoOfIsRightKanExtension_inv_π, limitIsoOfIsRightKanExtension_inv_π_assoc, rightKanExtensionUniqueOfIso_hom, rightKanExtensionUniqueOfIso_inv, rightKanExtensionUnique_hom, rightKanExtensionUnique_inv, rightKanExtension_hom_ext, rightKanExtension_hom_ext_iff, ι_colimitIsoOfIsLeftKanExtension_hom, ι_colimitIsoOfIsLeftKanExtension_hom_assoc, ι_colimitIsoOfIsLeftKanExtension_inv, ι_colimitIsoOfIsLeftKanExtension_inv_assoc
138
Total188

CategoryTheory.Functor

Definitions

NameCategoryTheorems
HasLeftKanExtension 📖MathDef
11 mathmath: hasRightDerivedFunctor_iff, LeftExtension.IsPointwiseLeftKanExtension.hasLeftKanExtension, hasLeftExtension_iff_of_iso₁, HasRightDerivedFunctor.hasLeftKanExtension', hasLeftExtension_iff_of_iso₂, HasLeftKanExtension.mk, CategoryTheory.TwoSquare.hasLeftKanExtension, instHasLeftKanExtension, HasRightDerivedFunctor.hasLeftKanExtension, hasLeftKanExtension_of_preserves, hasLeftExtension_iff_postcomp₁
HasRightKanExtension 📖MathDef
10 mathmath: HasRightKanExtension.mk, hasLeftDerivedFunctor_iff, HasLeftDerivedFunctor.hasRightKanExtension', hasRightExtension_iff_of_iso₁, HasLeftDerivedFunctor.hasRightKanExtension, instHasRightKanExtension, hasRightKanExtension_of_preserves, RightExtension.IsPointwiseRightKanExtension.hasRightKanExtension, hasRightExtension_iff_of_iso₂, hasRightExtension_iff_postcomp₁
IsLeftKanExtension 📖CompData
36 mathmath: isLeftKanExtension_iff_isIso, IsRightDerivedFunctor.isLeftKanExtension, isRightDerivedFunctor_iff_isLeftKanExtension, CategoryTheory.MonoidalCategory.DayFunctor.instIsLeftKanExtensionDiscretePUnitFunctorTensorUnitνNatTrans, isLeftKanExtension_of_iso, CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, instIsLeftKanExtensionSimplexCategoryTopCatSSetToTopInvFunctorToTopSimplex, instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit, CategoryTheory.Presheaf.isLeftKanExtension_along_yoneda_iff, LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, instIsLeftKanExtensionObjLanAppLanUnit, isLeftKanExtension_iff_postcompose, CategoryTheory.MonoidalCategory.DayConvolution.instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitRightUnit, CategoryTheory.Presheaf.isLeftKanExtension_along_uliftYoneda_iff, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.MonoidalCategory.DayConvolutionUnit.instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitLeftφ, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, isIso_lanAdjunction_homEquiv_symm_iff, isLeftKanExtensionId, isLeftKanExtension_iff_postcomp₁, CategoryTheory.Presheaf.isLeftKanExtension_of_preservesColimits, isLeftKanExtensionAlongEquivalence, PreservesLeftKanExtension.preserves, CategoryTheory.MonoidalCategory.DayConvolution.instIsLeftKanExtensionProdExternalProductConvolutionExtensionUnitLeftUnit, CategoryTheory.SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, CategoryTheory.MonoidalCategory.DayFunctor.instIsLeftKanExtensionProdFunctorTensorObjη, isLeftKanExtension_iff_precomp, instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit, CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeIdCompUliftYonedaOfPreservesColimitsOfSizeOfHasPointwiseLeftKanExtension, isLeftKanExtension_iff_of_iso, isIso_lanAdjunction_counit_app_iff, isLeftKanExtensionAlongEquivalence', isLeftKanExtension_iff_of_iso₂, CategoryTheory.MonoidalCategory.DayConvolutionUnit.instIsLeftKanExtensionProdDiscretePUnitExternalProductExtensionUnitRightφ, CategoryTheory.Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap, CategoryTheory.MonoidalCategory.DayConvolution.leftKanExtension
IsRightKanExtension 📖CompData
23 mathmath: CategoryTheory.SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, PreservesRightKanExtension.preserves, isRightKanExtension_iff_of_iso, isLeftDerivedFunctor_iff_isRightKanExtension, instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit, isIso_ranAdjunction_unit_app_iff, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, CategoryTheory.SimplicialObject.isCoskeletal_iff, IsLeftDerivedFunctor.isRightKanExtension, isIso_ranAdjunction_homEquiv_iff, instIsRightKanExtensionObjRanAppRanCounit, RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, CategoryTheory.SimplicialObject.IsCoskeletal.isRightKanExtension, isRightKanExtensionId, isRightKanExtension_iff_precomp, isRightKanExtension_iff_isIso, isRightKanExtensionAlongEquivalence', instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit, isRightKanExtension_iff_postcomp₁, SSet.StrictSegal.isRightKanExtension, isRightKanExtension_of_iso, isRightKanExtension_iff_of_iso₂, isRightKanExtensionAlongEquivalence
LeftExtension 📖CompOp
45 mathmath: LeftExtension.coconeAtFunctor_map_hom, leftExtensionEquivalenceOfIso₁_functor_map_left, LeftExtension.precomp₂_obj_hom_app, LeftExtension.precomp₂_map_right, LeftExtension.postcomp₁_map_right_app, leftExtensionEquivalenceOfIso₁_functor_obj_left, LeftExtension.postcomp₁_obj_left, LeftExtension.precomp_map_right, LeftExtension.precomp₂_obj_left, LeftExtension.precomp_obj_hom_app, LeftExtension.coconeAtWhiskerRightIso_inv_hom, LeftExtension.postcompose₂_obj_right_map, leftExtensionEquivalenceOfIso₁_inverse_map_left, leftExtensionEquivalenceOfIso₁_inverse_obj_left, LeftExtension.postcompose₂ObjMkIso_inv_right_app, LeftExtension.postcompose₂_map_right_app, instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, LeftExtension.postcompose₂_obj_hom_app, LeftExtension.postcomp₁_obj_hom_app, leftExtensionEquivalenceOfIso₁_inverse_map_right, LeftExtension.postcompose₂_obj_right_obj, leftExtensionEquivalenceOfIso₁_inverse_obj_right, leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, LeftExtension.postcompose₂ObjMkIso_hom_right_app, LeftExtension.postcomp₁_obj_right_map, PreservesPointwiseLeftKanExtensionAt.preserves, LeftExtension.coconeAtFunctor_obj, LeftExtension.coconeAtWhiskerRightIso_hom_hom, instIsEquivalenceLeftExtensionCompPrecomp, leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, LeftExtension.precomp_obj_right, LeftExtension.postcompose₂_obj_left, LeftExtension.precomp_obj_left, leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, LeftExtension.postcompose₂_map_left, LeftExtension.postcomp₁_obj_right_obj, LeftExtension.precomp_map_left, LeftExtension.precomp₂_obj_right, LeftExtension.postcomp₁_map_left, leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, LeftExtension.precomp₂_map_left, leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, leftExtensionEquivalenceOfIso₁_functor_map_right, leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, leftExtensionEquivalenceOfIso₁_functor_obj_right
RightExtension 📖CompOp
26 mathmath: RightExtension.postcompose₂_obj_left_map, RightExtension.postcompose₂_obj_right, RightExtension.postcomp₁_obj_left_map, RightExtension.postcomp₁_map_right, RightExtension.precomp_map_left, instIsEquivalenceRightExtensionPostcomp₁OfIsIso, RightExtension.coneAtFunctor_obj, RightExtension.postcomp₁_obj_left_obj, RightExtension.coneAtWhiskerRightIso_inv_hom, RightExtension.precomp_obj_right, RightExtension.postcomp₁_map_left_app, PreservesPointwiseRightKanExtensionAt.preserves, RightExtension.postcomp₁_obj_right, RightExtension.postcompose₂_obj_hom_app, RightExtension.precomp_obj_hom_app, RightExtension.precomp_map_right, RightExtension.postcompose₂ObjMkIso_inv_left_app, RightExtension.postcompose₂_map_left_app, RightExtension.postcompose₂_obj_left_obj, RightExtension.postcompose₂_map_right, RightExtension.coneAtFunctor_map_hom, RightExtension.coneAtWhiskerRightIso_hom_hom, RightExtension.postcomp₁_obj_hom_app, RightExtension.postcompose₂ObjMkIso_hom_left_app, RightExtension.precomp_obj_left, instIsEquivalenceRightExtensionCompPrecomp
coconeOfIsLeftKanExtension 📖CompOp
3 mathmath: isColimitCoconeOfIsLeftKanExtension_desc, coconeOfIsLeftKanExtension_ι, coconeOfIsLeftKanExtension_pt
colimitIsoOfIsLeftKanExtension 📖CompOp
6 mathmath: ι_colimitIsoOfIsLeftKanExtension_inv_assoc, ι_colimitIsoOfIsLeftKanExtension_inv, lanCompColimIso_inv_app, ι_colimitIsoOfIsLeftKanExtension_hom, ι_colimitIsoOfIsLeftKanExtension_hom_assoc, lanCompColimIso_hom_app
coneOfIsRightKanExtension 📖CompOp
3 mathmath: coneOfIsRightKanExtension_pt, isLimitConeOfIsRightKanExtension_lift, coneOfIsRightKanExtension_π
descOfIsLeftKanExtension 📖CompOp
13 mathmath: descOfIsLeftKanExtension_fac_assoc, homEquivOfIsLeftKanExtension_symm_apply, coconeOfIsLeftKanExtension_ι, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, leftKanExtensionUniqueOfIso_inv, descOfIsLeftKanExtension_fac_app_assoc, descOfIsLeftKanExtension_fac, leftKanExtensionUniqueOfIso_hom, descOfIsLeftKanExtension_fac_app, lanAdjunction_counit_app, pointwiseLeftKanExtension_desc_app, leftKanExtensionUnique_inv, leftKanExtensionUnique_hom
homEquivOfIsLeftKanExtension 📖CompOp
6 mathmath: CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂_homEquiv, homEquivOfIsLeftKanExtension_symm_apply, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂'_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, homEquivOfIsLeftKanExtension_apply_app
homEquivOfIsRightKanExtension 📖CompOp
2 mathmath: homEquivOfIsRightKanExtension_symm_apply, homEquivOfIsRightKanExtension_apply_app
isColimitCoconeOfIsLeftKanExtension 📖CompOp
1 mathmath: isColimitCoconeOfIsLeftKanExtension_desc
isLimitConeOfIsRightKanExtension 📖CompOp
1 mathmath: isLimitConeOfIsRightKanExtension_lift
isUniversalOfIsLeftKanExtension 📖CompOp
isUniversalOfIsRightKanExtension 📖CompOp
leftExtensionEquivalenceOfIso₁ 📖CompOp
14 mathmath: leftExtensionEquivalenceOfIso₁_functor_map_left, leftExtensionEquivalenceOfIso₁_functor_obj_left, leftExtensionEquivalenceOfIso₁_inverse_map_left, leftExtensionEquivalenceOfIso₁_inverse_obj_left, leftExtensionEquivalenceOfIso₁_inverse_map_right, leftExtensionEquivalenceOfIso₁_inverse_obj_right, leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, leftExtensionEquivalenceOfIso₁_functor_map_right, leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, leftExtensionEquivalenceOfIso₁_functor_obj_right
leftExtensionEquivalenceOfIso₂ 📖CompOp
leftKanExtension 📖CompOp
21 mathmath: leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, ι_leftKanExtensionObjIsoColimit_inv, leftKanExtensionCompIsoOfPreserves_hom_fac_app, ι_leftKanExtensionObjIsoColimit_inv_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, leftKanExtension_hom_ext_iff, leftKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, leftKanExtensionIsoFiberwiseColimit_hom_app, leftKanExtensionCompIsoOfPreserves_inv_fac, instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit, ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.Presheaf.preservesColimitsOfSize_leftKanExtension, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_app, ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.Presheaf.instIsIsoFunctorLeftKanExtensionUnitOppositeTypeUliftYoneda, leftKanExtensionIsoFiberwiseColimit_inv_app
leftKanExtensionUnique 📖CompOp
2 mathmath: leftKanExtensionUnique_inv, leftKanExtensionUnique_hom
leftKanExtensionUniqueOfIso 📖CompOp
2 mathmath: leftKanExtensionUniqueOfIso_inv, leftKanExtensionUniqueOfIso_hom
leftKanExtensionUnit 📖CompOp
18 mathmath: leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, ι_leftKanExtensionObjIsoColimit_inv, leftKanExtensionCompIsoOfPreserves_hom_fac_app, ι_leftKanExtensionObjIsoColimit_inv_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, leftKanExtension_hom_ext_iff, leftKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, leftKanExtensionCompIsoOfPreserves_inv_fac, instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit, ι_leftKanExtensionObjIsoColimit_hom, leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_app, ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.Presheaf.instIsIsoFunctorLeftKanExtensionUnitOppositeTypeUliftYoneda
liftOfIsRightKanExtension 📖CompOp
12 mathmath: liftOfIsRightKanExtension_fac, rightKanExtensionUniqueOfIso_hom, pointwiseRightKanExtension_lift_app, liftOfIsRightKanExtension_fac_app, liftOfIsRightKanExtension_fac_app_assoc, coneOfIsRightKanExtension_π, homEquivOfIsRightKanExtension_symm_apply, rightKanExtensionUniqueOfIso_inv, ranAdjunction_unit_app, rightKanExtensionUnique_hom, rightKanExtensionUnique_inv, liftOfIsRightKanExtension_fac_assoc
limitIsoOfIsRightKanExtension 📖CompOp
6 mathmath: ranCompLimIso_inv_app, limitIsoOfIsRightKanExtension_hom_π_assoc, limitIsoOfIsRightKanExtension_inv_π_assoc, limitIsoOfIsRightKanExtension_hom_π, ranCompLimIso_hom_app, limitIsoOfIsRightKanExtension_inv_π
rightExtensionEquivalenceOfIso₁ 📖CompOp
rightExtensionEquivalenceOfIso₂ 📖CompOp
rightKanExtension 📖CompOp
10 mathmath: rightKanExtensionCompIsoOfPreserves_inv_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit, rightKanExtension_hom_ext_iff, rightKanExtensionCompIsoOfPreserves_hom_fac, rightKanExtensionCompIsoOfPreserves_inv_fac, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc
rightKanExtensionCounit 📖CompOp
10 mathmath: rightKanExtensionCompIsoOfPreserves_inv_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit, rightKanExtension_hom_ext_iff, rightKanExtensionCompIsoOfPreserves_hom_fac, rightKanExtensionCompIsoOfPreserves_inv_fac, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc
rightKanExtensionUnique 📖CompOp
2 mathmath: rightKanExtensionUnique_hom, rightKanExtensionUnique_inv
rightKanExtensionUniqueOfIso 📖CompOp
2 mathmath: rightKanExtensionUniqueOfIso_hom, rightKanExtensionUniqueOfIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coconeOfIsLeftKanExtension_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
coconeOfIsLeftKanExtension
coconeOfIsLeftKanExtension_ι 📖mathematicalCategoryTheory.Limits.Cocone.ι
coconeOfIsLeftKanExtension
descOfIsLeftKanExtension
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cocone.pt
coneOfIsRightKanExtension_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
coneOfIsRightKanExtension
coneOfIsRightKanExtension_π 📖mathematicalCategoryTheory.Limits.Cone.π
coneOfIsRightKanExtension
liftOfIsRightKanExtension
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cone.pt
descOfIsLeftKanExtension_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
descOfIsLeftKanExtension
CategoryTheory.StructuredArrow.IsUniversal.fac
descOfIsLeftKanExtension_fac_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.NatTrans.app
descOfIsLeftKanExtension
CategoryTheory.NatTrans.congr_app
descOfIsLeftKanExtension_fac
descOfIsLeftKanExtension_fac_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
comp
descOfIsLeftKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
descOfIsLeftKanExtension_fac_app
descOfIsLeftKanExtension_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
descOfIsLeftKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
descOfIsLeftKanExtension_fac
hasLeftExtension_iff_of_iso₁ 📖mathematicalHasLeftKanExtensionCategoryTheory.Equivalence.hasInitial_iff
hasLeftExtension_iff_of_iso₂ 📖mathematicalHasLeftKanExtensionCategoryTheory.Equivalence.hasInitial_iff
hasLeftExtension_iff_postcomp₁ 📖mathematicalHasLeftKanExtensionCategoryTheory.Equivalence.hasInitial_iff
instIsEquivalenceLeftExtensionPostcomp₁OfIsIso
CategoryTheory.Iso.isIso_inv
hasRightExtension_iff_of_iso₁ 📖mathematicalHasRightKanExtensionCategoryTheory.Equivalence.hasTerminal_iff
hasRightExtension_iff_of_iso₂ 📖mathematicalHasRightKanExtensionCategoryTheory.Equivalence.hasTerminal_iff
hasRightExtension_iff_postcomp₁ 📖mathematicalHasRightKanExtensionCategoryTheory.Equivalence.hasTerminal_iff
instIsEquivalenceRightExtensionPostcomp₁OfIsIso
CategoryTheory.Iso.isIso_hom
homEquivOfIsLeftKanExtension_apply_app 📖mathematicalCategoryTheory.NatTrans.app
comp
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
EquivLike.toFunLike
Equiv.instEquivLike
homEquivOfIsLeftKanExtension
CategoryTheory.CategoryStruct.comp
obj
homEquivOfIsLeftKanExtension_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
comp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquivOfIsLeftKanExtension
descOfIsLeftKanExtension
homEquivOfIsRightKanExtension_apply_app 📖mathematicalCategoryTheory.NatTrans.app
comp
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
EquivLike.toFunLike
Equiv.instEquivLike
homEquivOfIsRightKanExtension
CategoryTheory.CategoryStruct.comp
obj
homEquivOfIsRightKanExtension_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
comp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquivOfIsRightKanExtension
liftOfIsRightKanExtension
hom_ext_of_isLeftKanExtension 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.StructuredArrow.IsUniversal.hom_ext
hom_ext_of_isRightKanExtension 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.CostructuredArrow.IsUniversal.hom_ext
instIsEquivalenceLeftExtensionCompPrecomp 📖mathematicalIsEquivalence
LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
category
obj
whiskeringLeft
comp
LeftExtension.precomp
CategoryTheory.StructuredArrow.isEquivalenceMap₂
isEquivalence_refl
IsEquivalence.faithful
instIsEquivalenceObjWhiskeringLeft
IsEquivalence.full
CategoryTheory.IsIso.id
instIsEquivalenceLeftExtensionPostcomp₁OfIsIso 📖mathematicalIsEquivalence
LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
category
obj
whiskeringLeft
LeftExtension.postcomp₁
CategoryTheory.StructuredArrow.isEquivalenceMap₂
instIsEquivalenceObjWhiskeringLeft
Faithful.id
Full.id
CategoryTheory.IsIso.id
map_isIso
instIsEquivalenceRightExtensionCompPrecomp 📖mathematicalIsEquivalence
RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
category
obj
whiskeringLeft
comp
RightExtension.precomp
CategoryTheory.CostructuredArrow.isEquivalenceMap₂
isEquivalence_refl
IsEquivalence.faithful
instIsEquivalenceObjWhiskeringLeft
IsEquivalence.full
CategoryTheory.IsIso.id
instIsEquivalenceRightExtensionPostcomp₁OfIsIso 📖mathematicalIsEquivalence
RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
category
obj
whiskeringLeft
RightExtension.postcomp₁
CategoryTheory.CostructuredArrow.isEquivalenceMap₂
instIsEquivalenceObjWhiskeringLeft
Faithful.id
Full.id
map_isIso
CategoryTheory.IsIso.id
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit 📖mathematicalIsLeftKanExtension
leftKanExtension
leftKanExtensionUnit
instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit 📖mathematicalIsRightKanExtension
rightKanExtension
rightKanExtensionCounit
isColimitCoconeOfIsLeftKanExtension_desc 📖mathematicalCategoryTheory.Limits.IsColimit.desc
coconeOfIsLeftKanExtension
isColimitCoconeOfIsLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
obj
const
whiskerLeft
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
isLeftKanExtensionAlongEquivalence 📖mathematicalIsLeftKanExtension
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
comp
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.NatTrans.ext'
LeftExtension.postcomp₁_obj_hom_app
map_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_app_assoc
CategoryTheory.StructuredArrow.hom_ext
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Category.id_comp
CategoryTheory.whisker_eq
CategoryTheory.congr_app
CategoryTheory.CommaMorphism.w
isLeftKanExtensionAlongEquivalence' 📖mathematicalIsLeftKanExtensionisLeftKanExtensionAlongEquivalence
isLeftKanExtensionId 📖mathematicalIsLeftKanExtension
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
comp
leftUnitor
IsEquivalence.full
instIsEquivalenceObjWhiskeringLeft
isEquivalence_refl
IsEquivalence.faithful
isLeftKanExtension_iff_isIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
IsLeftKanExtension
CategoryTheory.IsIso
hom_ext_of_isLeftKanExtension
leftKanExtensionUnique_hom
descOfIsLeftKanExtension_fac
CategoryTheory.Iso.isIso_hom
isLeftKanExtension_of_iso
isLeftKanExtension_iff_of_iso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsLeftKanExtensionisLeftKanExtension_of_iso
CategoryTheory.Category.assoc
whiskerLeft_comp
CategoryTheory.Iso.symm_hom
CategoryTheory.Iso.hom_inv_id
whiskerLeft_id'
CategoryTheory.Category.comp_id
isLeftKanExtension_iff_of_iso₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsLeftKanExtension
isLeftKanExtension_iff_postcompose 📖mathematicalQuiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
comp
CategoryTheory.CategoryStruct.comp
whiskerLeft
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
IsLeftKanExtensionCategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeOfIsLeftAdjoint
isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.CreatesColimit.toReflectsColimit
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.ext'
LeftExtension.precomp₂_obj_hom_app
CategoryTheory.congr_app
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_app
map_id
CategoryTheory.Equivalence.isEquivalence_functor
isLeftKanExtension_iff_postcomp₁ 📖mathematicalIsLeftKanExtension
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
associator
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.ext'
LeftExtension.postcomp₁_obj_hom_app
isLeftKanExtension_iff_precomp 📖mathematicalIsLeftKanExtension
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
whiskerLeft
CategoryTheory.Iso.inv
associator
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.ext'
LeftExtension.precomp_obj_hom_app
isLeftKanExtension_of_iso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsLeftKanExtension
isLimitConeOfIsRightKanExtension_lift 📖mathematicalCategoryTheory.Limits.IsLimit.lift
coneOfIsRightKanExtension
isLimitConeOfIsRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
obj
const
comp
whiskerLeft
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
isRightKanExtensionAlongEquivalence 📖mathematicalIsRightKanExtension
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
comp
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.ext'
RightExtension.postcomp₁_obj_hom_app
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.CostructuredArrow.hom_ext
CategoryTheory.Iso.hom_inv_id_app
CategoryTheory.Discrete.functor_map_id
CategoryTheory.eq_whisker
CategoryTheory.congr_app
CategoryTheory.CommaMorphism.w
isRightKanExtensionAlongEquivalence' 📖mathematicalIsRightKanExtensionisRightKanExtensionAlongEquivalence
isRightKanExtensionId 📖mathematicalIsRightKanExtension
id
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
comp
leftUnitor
IsEquivalence.full
instIsEquivalenceObjWhiskeringLeft
isEquivalence_refl
IsEquivalence.faithful
isRightKanExtension_iff_isIso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
IsRightKanExtension
CategoryTheory.IsIso
hom_ext_of_isRightKanExtension
rightKanExtensionUnique_hom
liftOfIsRightKanExtension_fac
CategoryTheory.Iso.isIso_hom
isRightKanExtension_iff_of_iso
isRightKanExtension_iff_of_iso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsRightKanExtensionisRightKanExtension_of_iso
whiskerLeft_comp_assoc
CategoryTheory.Iso.symm_hom
CategoryTheory.Iso.inv_hom_id
whiskerLeft_id'
CategoryTheory.Category.id_comp
isRightKanExtension_iff_of_iso₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsRightKanExtension
isRightKanExtension_iff_postcomp₁ 📖mathematicalIsRightKanExtension
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.ext'
RightExtension.postcomp₁_obj_hom_app
isRightKanExtension_iff_precomp 📖mathematicalIsRightKanExtension
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.ext'
RightExtension.precomp_obj_hom_app
isRightKanExtension_of_iso 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
CategoryTheory.Iso.hom
IsRightKanExtension
leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
mapIso
CategoryTheory.Iso.hom
id
CategoryTheory.CommaMorphism.right
CategoryTheory.Equivalence.counitIso
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
id
comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
mapIso
CategoryTheory.Iso.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Equivalence.counitIso
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
leftExtensionEquivalenceOfIso₁_functor_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapIso
map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
leftExtensionEquivalenceOfIso₁_functor_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapIso
map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_functor_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
CategoryTheory.Comma.left
whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
map
CategoryTheory.Iso.hom
leftExtensionEquivalenceOfIso₁_functor_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_functor_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_inverse_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapIso
map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
leftExtensionEquivalenceOfIso₁_inverse_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapIso
map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
CategoryTheory.Comma.left
whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
map
CategoryTheory.Iso.inv
leftExtensionEquivalenceOfIso₁_inverse_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_inverse_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
id
comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
mapIso
CategoryTheory.Iso.inv
CategoryTheory.CommaMorphism.right
CategoryTheory.Equivalence.unitIso
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
category
fromPUnit
obj
whiskeringLeft
CategoryTheory.Comma
CategoryTheory.commaCategory
comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
mapIso
CategoryTheory.Iso.inv
id
CategoryTheory.CommaMorphism.right
CategoryTheory.Equivalence.unitIso
LeftExtension
CategoryTheory.instCategoryStructuredArrow
leftExtensionEquivalenceOfIso₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
leftKanExtensionUniqueOfIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftKanExtensionUniqueOfIso
descOfIsLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
leftKanExtensionUniqueOfIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftKanExtensionUniqueOfIso
descOfIsLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
leftKanExtensionUnique_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftKanExtensionUnique
descOfIsLeftKanExtension
descOfIsLeftKanExtension.congr_simp
CategoryTheory.Category.id_comp
leftKanExtensionUnique_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftKanExtensionUnique
descOfIsLeftKanExtension
descOfIsLeftKanExtension.congr_simp
CategoryTheory.Category.id_comp
leftKanExtension_hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
leftKanExtensionUnit
whiskerLeft
hom_ext_of_isLeftKanExtension
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
leftKanExtension_hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
leftKanExtensionUnit
whiskerLeft
leftKanExtension_hom_ext
liftOfIsRightKanExtension_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
liftOfIsRightKanExtension
CategoryTheory.CostructuredArrow.IsUniversal.fac
liftOfIsRightKanExtension_fac_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
liftOfIsRightKanExtension
comp
CategoryTheory.NatTrans.congr_app
liftOfIsRightKanExtension_fac
liftOfIsRightKanExtension_fac_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
liftOfIsRightKanExtension
comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftOfIsRightKanExtension_fac_app
liftOfIsRightKanExtension_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
liftOfIsRightKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftOfIsRightKanExtension_fac
limitIsoOfIsRightKanExtension_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
obj
CategoryTheory.Iso.hom
limitIsoOfIsRightKanExtension
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.eq_inv_comp
limitIsoOfIsRightKanExtension_inv_π
limitIsoOfIsRightKanExtension_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Iso.hom
limitIsoOfIsRightKanExtension
obj
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limitIsoOfIsRightKanExtension_hom_π
limitIsoOfIsRightKanExtension_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
obj
CategoryTheory.Iso.inv
limitIsoOfIsRightKanExtension
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
comp
CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp_assoc
liftOfIsRightKanExtension_fac_app
limitIsoOfIsRightKanExtension_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Iso.inv
limitIsoOfIsRightKanExtension
obj
CategoryTheory.Limits.limit.π
CategoryTheory.NatTrans.app
comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limitIsoOfIsRightKanExtension_inv_π
rightKanExtensionUniqueOfIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightKanExtensionUniqueOfIso
liftOfIsRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
rightKanExtensionUniqueOfIso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightKanExtensionUniqueOfIso
liftOfIsRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
rightKanExtensionUnique_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightKanExtensionUnique
liftOfIsRightKanExtension
liftOfIsRightKanExtension.congr_simp
CategoryTheory.Category.comp_id
rightKanExtensionUnique_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightKanExtensionUnique
liftOfIsRightKanExtension
liftOfIsRightKanExtension.congr_simp
CategoryTheory.Category.comp_id
rightKanExtension_hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
whiskerLeft
rightKanExtensionCounit
hom_ext_of_isRightKanExtension
instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit
rightKanExtension_hom_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
whiskerLeft
rightKanExtensionCounit
rightKanExtension_hom_ext
ι_colimitIsoOfIsLeftKanExtension_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
CategoryTheory.Limits.colimit
CategoryTheory.NatTrans.app
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
colimitIsoOfIsLeftKanExtension
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom
descOfIsLeftKanExtension_fac_app
ι_colimitIsoOfIsLeftKanExtension_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.NatTrans.app
comp
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.hom
colimitIsoOfIsLeftKanExtension
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimitIsoOfIsLeftKanExtension_hom
ι_colimitIsoOfIsLeftKanExtension_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
colimitIsoOfIsLeftKanExtension
comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
ι_colimitIsoOfIsLeftKanExtension_hom
ι_colimitIsoOfIsLeftKanExtension_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Limits.colimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
colimitIsoOfIsLeftKanExtension
CategoryTheory.NatTrans.app
comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_colimitIsoOfIsLeftKanExtension_inv

CategoryTheory.Functor.HasLeftKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
mk 📖mathematicalCategoryTheory.Functor.HasLeftKanExtensionCategoryTheory.Limits.IsInitial.hasInitial

CategoryTheory.Functor.HasRightKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
mk 📖mathematicalCategoryTheory.Functor.HasRightKanExtensionCategoryTheory.Limits.IsTerminal.hasTerminal

CategoryTheory.Functor.IsLeftKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_isUniversal 📖mathematicalCategoryTheory.StructuredArrow.IsUniversal
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft

CategoryTheory.Functor.IsRightKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_isUniversal 📖mathematicalCategoryTheory.CostructuredArrow.IsUniversal
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft

CategoryTheory.Functor.LeftExtension

Definitions

NameCategoryTheorems
isUniversalEquivOfIso₂ 📖CompOp
isUniversalOfPrecomp₂ 📖CompOp
isUniversalPostcomp₁Equiv 📖CompOp
isUniversalPrecompEquiv 📖CompOp
isUniversalPrecomp₂ 📖CompOp
isUniversalPrecomp₂Equiv 📖CompOp
mk 📖CompOp
postcompose₂ 📖CompOp
11 mathmath: coconeAtWhiskerRightIso_inv_hom, postcompose₂_obj_right_map, postcompose₂ObjMkIso_inv_right_app, postcompose₂_map_right_app, postcompose₂_obj_hom_app, postcompose₂_obj_right_obj, postcompose₂ObjMkIso_hom_right_app, CategoryTheory.Functor.PreservesPointwiseLeftKanExtensionAt.preserves, coconeAtWhiskerRightIso_hom_hom, postcompose₂_obj_left, postcompose₂_map_left
postcompose₂ObjMkIso 📖CompOp
2 mathmath: postcompose₂ObjMkIso_inv_right_app, postcompose₂ObjMkIso_hom_right_app
postcomp₁ 📖CompOp
7 mathmath: postcomp₁_map_right_app, postcomp₁_obj_left, CategoryTheory.Functor.instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, postcomp₁_obj_hom_app, postcomp₁_obj_right_map, postcomp₁_obj_right_obj, postcomp₁_map_left
precomp 📖CompOp
9 mathmath: precomp₂_obj_hom_app, precomp₂_map_right, precomp_map_right, precomp_obj_hom_app, CategoryTheory.Functor.instIsEquivalenceLeftExtensionCompPrecomp, precomp_obj_right, precomp_obj_left, precomp_map_left, precomp₂_map_left
precomp₂ 📖CompOp
5 mathmath: precomp₂_obj_hom_app, precomp₂_map_right, precomp₂_obj_left, precomp₂_obj_right, precomp₂_map_left

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
mk_left_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
mk_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
postcompose₂ObjMkIso_hom_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.CommaMorphism.right
postcompose₂ObjMkIso
CategoryTheory.CategoryStruct.id
postcompose₂ObjMkIso_inv_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
postcompose₂ObjMkIso
CategoryTheory.CategoryStruct.id
postcompose₂_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
postcompose₂_map_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
postcompose₂_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
postcompose₂_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
postcompose₂_obj_right_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
postcompose₂_obj_right_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcompose₂
postcomp₁_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
postcomp₁_map_right_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
postcomp₁_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
postcomp₁_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
postcomp₁_obj_right_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
postcomp₁_obj_right_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
postcomp₁
precomp_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
precomp_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
precomp_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
precomp_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
precomp_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
precomp₂_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.map
precomp
CategoryTheory.Functor.map
precomp₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
precomp₂_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.map
precomp
CategoryTheory.Functor.map
precomp₂
precomp₂_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
precomp₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
precomp_obj_hom_app
precomp₂_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp₂
precomp₂_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
precomp₂

CategoryTheory.Functor.RightExtension

Definitions

NameCategoryTheorems
isUniversalEquivOfIso₂ 📖CompOp
isUniversalPostcomp₁Equiv 📖CompOp
isUniversalPrecompEquiv 📖CompOp
mk 📖CompOp
postcompose₂ 📖CompOp
11 mathmath: postcompose₂_obj_left_map, postcompose₂_obj_right, coneAtWhiskerRightIso_inv_hom, CategoryTheory.Functor.PreservesPointwiseRightKanExtensionAt.preserves, postcompose₂_obj_hom_app, postcompose₂ObjMkIso_inv_left_app, postcompose₂_map_left_app, postcompose₂_obj_left_obj, postcompose₂_map_right, coneAtWhiskerRightIso_hom_hom, postcompose₂ObjMkIso_hom_left_app
postcompose₂ObjMkIso 📖CompOp
2 mathmath: postcompose₂ObjMkIso_inv_left_app, postcompose₂ObjMkIso_hom_left_app
postcomp₁ 📖CompOp
7 mathmath: postcomp₁_obj_left_map, postcomp₁_map_right, CategoryTheory.Functor.instIsEquivalenceRightExtensionPostcomp₁OfIsIso, postcomp₁_obj_left_obj, postcomp₁_map_left_app, postcomp₁_obj_right, postcomp₁_obj_hom_app
precomp 📖CompOp
6 mathmath: precomp_map_left, precomp_obj_right, precomp_obj_hom_app, precomp_map_right, precomp_obj_left, CategoryTheory.Functor.instIsEquivalenceRightExtensionCompPrecomp

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
mk_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
mk_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
postcompose₂ObjMkIso_hom_left_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
postcompose₂ObjMkIso
CategoryTheory.CategoryStruct.id
postcompose₂ObjMkIso_inv_left_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
CategoryTheory.CommaMorphism.left
postcompose₂ObjMkIso
CategoryTheory.CategoryStruct.id
postcompose₂_map_left_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
postcompose₂_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
postcompose₂_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
postcompose₂_obj_left_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
postcompose₂_obj_left_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
postcompose₂_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcompose₂
postcomp₁_map_left_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
postcomp₁_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
postcomp₁_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor.comp
CategoryTheory.Category.comp_id
postcomp₁_obj_left_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
postcomp₁_obj_left_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
postcomp₁_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
postcomp₁
precomp_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
precomp
precomp_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
precomp
precomp_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
precomp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
precomp_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
precomp
precomp_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
precomp

---

← Back to Index