Documentation Verification Report

Dense

📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/Dense.lean

Statistics

MetricCount
DefinitionsIsDense, denseAt
2
Theoremscomp_left_iff_of_isEquivalence, comp_right_iff_of_isEquivalence, iff_of_iso, isDenseAt, of_fullyFaithful_restrictedULiftYoneda, of_iso, instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense, instFullOppositeTypeRestrictedULiftYonedaOfIsDense, instIsDenseCompOfIsEquivalence, instIsDenseCompOfIsEquivalence_1, isDense_iff_fullyFaithful_restrictedULiftYoneda, isDense_iff_nonempty_isPointwiseLeftKanExtension, isStrongGenerator_of_isDense
13
Total15

CategoryTheory.Functor

Definitions

NameCategoryTheorems
IsDense 📖CompData
12 mathmath: IsDense.comp_left_iff_of_isEquivalence, isDense_iff_nonempty_isPointwiseLeftKanExtension, instIsDenseCompOfIsEquivalence_1, IsDense.iff_of_iso, isDense_iff_fullyFaithful_restrictedULiftYoneda, IsDense.of_iso, CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι, CategoryTheory.IsCardinalAccessibleCategory.instIsDenseFullSubcategoryIsCardinalPresentableι, instIsDenseCompOfIsEquivalence, CategoryTheory.IsFinitelyAccessibleCategory.instIsDenseFullSubcategoryIsFinitelyPresentableι, IsDense.of_fullyFaithful_restrictedULiftYoneda, IsDense.comp_right_iff_of_isEquivalence
denseAt 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense 📖mathematicalFaithful
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
category
CategoryTheory.Presheaf.restrictedULiftYoneda
LeftExtension.IsPointwiseLeftKanExtensionAt.hom_ext'
CategoryTheory.Category.id_comp
ULift.up_injective
CategoryTheory.NatTrans.congr_app
instFullOppositeTypeRestrictedULiftYonedaOfIsDense 📖mathematicalFull
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
category
CategoryTheory.Presheaf.restrictedULiftYoneda
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.w
CategoryTheory.NatTrans.naturality
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Category.id_comp
ULift.down_injective
instIsDenseCompOfIsEquivalence 📖mathematicalIsDense
comp
final_of_isRightAdjoint
isRightAdjoint_of_isEquivalence
CategoryTheory.CostructuredArrow.isEquivalence_pre
instIsDenseCompOfIsEquivalence_1 📖mathematicalIsDense
comp
isDense_iff_fullyFaithful_restrictedULiftYoneda 📖mathematicalIsDense
FullyFaithful
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
category
CategoryTheory.Presheaf.restrictedULiftYoneda
instFullOppositeTypeRestrictedULiftYonedaOfIsDense
instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense
IsDense.of_fullyFaithful_restrictedULiftYoneda
isDense_iff_nonempty_isPointwiseLeftKanExtension 📖mathematicalIsDense
LeftExtension.IsPointwiseLeftKanExtension
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
comp
rightUnitor
isStrongGenerator_of_isDense 📖mathematicalCategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.ObjectProperty.IsStrongGenerator.mk_of_exists_colimitsOfShape
CategoryTheory.CostructuredArrow.instSmallOfLocallySmall
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.locallySmall_of_univLE
CategoryTheory.Shrink.instLocallySmallShrink
CategoryTheory.locallySmall_of_essentiallySmall
CategoryTheory.CostructuredArrow.essentiallySmall
CategoryTheory.essentiallySmall_of_small_of_locallySmall

CategoryTheory.Functor.IsDense

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left_iff_of_isEquivalence 📖mathematicalCategoryTheory.Functor.IsDense
CategoryTheory.Functor.comp
of_iso
CategoryTheory.Functor.instIsDenseCompOfIsEquivalence
CategoryTheory.Functor.isEquivalence_inv
comp_right_iff_of_isEquivalence 📖mathematicalCategoryTheory.Functor.IsDense
CategoryTheory.Functor.comp
of_iso
CategoryTheory.Functor.instIsDenseCompOfIsEquivalence_1
CategoryTheory.Functor.isEquivalence_inv
iff_of_iso 📖mathematicalCategoryTheory.Functor.IsDenseof_iso
isDenseAt 📖mathematicalCategoryTheory.Functor.isDenseAt
of_fullyFaithful_restrictedULiftYoneda 📖mathematicalCategoryTheory.Functor.IsDenseCategoryTheory.types_ext
CategoryTheory.Limits.Cocone.w
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.FullyFaithful.map_injective
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.FullyFaithful.map_preimage
of_iso 📖mathematicalCategoryTheory.Functor.IsDenseCategoryTheory.Functor.congr_isDenseAt

---

← Back to Index