📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/Dense.lean
IsDense
denseAt
comp_left_iff_of_isEquivalence
comp_right_iff_of_isEquivalence
iff_of_iso
isDenseAt
of_fullyFaithful_restrictedULiftYoneda
of_iso
instFaithfulOppositeTypeRestrictedULiftYonedaOfIsDense
instFullOppositeTypeRestrictedULiftYonedaOfIsDense
instIsDenseCompOfIsEquivalence
instIsDenseCompOfIsEquivalence_1
isDense_iff_fullyFaithful_restrictedULiftYoneda
isDense_iff_nonempty_isPointwiseLeftKanExtension
isStrongGenerator_of_isDense
IsDense.comp_left_iff_of_isEquivalence
IsDense.iff_of_iso
IsDense.of_iso
CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι
CategoryTheory.IsCardinalAccessibleCategory.instIsDenseFullSubcategoryIsCardinalPresentableι
CategoryTheory.IsFinitelyAccessibleCategory.instIsDenseFullSubcategoryIsFinitelyPresentableι
IsDense.of_fullyFaithful_restrictedULiftYoneda
IsDense.comp_right_iff_of_isEquivalence
Faithful
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
category
CategoryTheory.Presheaf.restrictedULiftYoneda
LeftExtension.IsPointwiseLeftKanExtensionAt.hom_ext'
CategoryTheory.Category.id_comp
ULift.up_injective
CategoryTheory.NatTrans.congr_app
Full
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.w
CategoryTheory.NatTrans.naturality
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Limits.IsColimit.fac
ULift.down_injective
comp
final_of_isRightAdjoint
isRightAdjoint_of_isEquivalence
CategoryTheory.CostructuredArrow.isEquivalence_pre
FullyFaithful
LeftExtension.IsPointwiseLeftKanExtension
id
CategoryTheory.Iso.inv
rightUnitor
CategoryTheory.ObjectProperty.IsStrongGenerator
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.ObjectProperty.IsStrongGenerator.mk_of_exists_colimitsOfShape
CategoryTheory.CostructuredArrow.instSmallOfLocallySmall
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.locallySmall_of_univLE
CategoryTheory.Shrink.instLocallySmallShrink
CategoryTheory.locallySmall_of_essentiallySmall
CategoryTheory.CostructuredArrow.essentiallySmall
CategoryTheory.essentiallySmall_of_small_of_locallySmall
CategoryTheory.Functor.IsDense
CategoryTheory.Functor.comp
CategoryTheory.Functor.instIsDenseCompOfIsEquivalence
CategoryTheory.Functor.isEquivalence_inv
CategoryTheory.Functor.instIsDenseCompOfIsEquivalence_1
CategoryTheory.Functor.isDenseAt
CategoryTheory.Limits.Cocone.w
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.FullyFaithful.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.FullyFaithful.map_preimage
CategoryTheory.Functor.congr_isDenseAt
---
← Back to Index