Documentation Verification Report

DenseAt

📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/DenseAt.lean

Statistics

MetricCount
DefinitionsDenseAt, ofIso, ofNatIso, postcompEquivalence, precompEquivOfFinal, precompEquivalence, precompOfFinal, denseAtEquiv, isDenseAt
9
Theoremsiff_of_final, of_final, congr_isDenseAt, instIsClosedUnderIsomorphismsIsDenseAt, isDenseAt_eq_isPointwiseLeftKanExtensionAt, isDenseAt_iff
6
Total15

CategoryTheory.Functor

Definitions

NameCategoryTheorems
DenseAt 📖CompOp
denseAtEquiv 📖CompOp
isDenseAt 📖CompOp
7 mathmath: IsDenseAt.iff_of_final, isDenseAt_eq_isPointwiseLeftKanExtensionAt, isDenseAt_iff, congr_isDenseAt, IsDense.isDenseAt, instIsClosedUnderIsomorphismsIsDenseAt, IsDenseAt.of_final

Theorems

NameKindAssumesProvesValidatesDepends On
congr_isDenseAt 📖mathematicalisDenseAt
instIsClosedUnderIsomorphismsIsDenseAt 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
isDenseAt
isDenseAt_eq_isPointwiseLeftKanExtensionAt
LeftExtension.instIsClosedUnderIsomorphismsIsPointwiseLeftKanExtensionAt
isDenseAt_eq_isPointwiseLeftKanExtensionAt 📖mathematicalisDenseAt
LeftExtension.isPointwiseLeftKanExtensionAt
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
comp
rightUnitor
isDenseAt_iff 📖mathematicalisDenseAt
CategoryTheory.Limits.IsColimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
LeftExtension.coconeAt
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightUnitor

CategoryTheory.Functor.DenseAt

Definitions

NameCategoryTheorems
ofIso 📖CompOp
ofNatIso 📖CompOp
postcompEquivalence 📖CompOp
precompEquivOfFinal 📖CompOp
precompEquivalence 📖CompOp
precompOfFinal 📖CompOp

CategoryTheory.Functor.IsDenseAt

Theorems

NameKindAssumesProvesValidatesDepends On
iff_of_final 📖mathematicalCategoryTheory.Functor.isDenseAt
CategoryTheory.Functor.comp
Equiv.nonempty_congr
of_final 📖mathematicalCategoryTheory.Functor.isDenseAt
CategoryTheory.Functor.comp
iff_of_final

---

← Back to Index