Documentation Verification Report

Pointwise

📁 Source: Mathlib/CategoryTheory/Functor/KanExtension/Pointwise.lean

Statistics

MetricCount
DefinitionsHasPointwiseLeftKanExtension, HasPointwiseLeftKanExtensionAt, HasPointwiseRightKanExtension, HasPointwiseRightKanExtensionAt, IsPointwiseLeftKanExtension, homFrom, isUniversal, IsPointwiseLeftKanExtensionAt, isoColimit, coconeAt, coconeAtFunctor, isPointwiseLeftKanExtensionAt, isPointwiseLeftKanExtensionAtEquivOfIso, isPointwiseLeftKanExtensionAtEquivOfIso', isPointwiseLeftKanExtensionAtOfIso', isPointwiseLeftKanExtensionEquivOfIso, IsPointwiseRightKanExtension, homTo, isUniversal, IsPointwiseRightKanExtensionAt, isoLimit, coneAt, coneAtFunctor, isPointwiseRightKanExtensionAt, isPointwiseRightKanExtensionAtEquivOfIso, isPointwiseRightKanExtensionAtEquivOfIso', isPointwiseRightKanExtensionAtOfIso', isPointwiseRightKanExtensionEquivOfIso, costructuredArrowMapCocone, isPointwiseLeftKanExtensionOfIsLeftKanExtension, isPointwiseRightKanExtensionOfIsRightKanExtension, pointwiseLeftKanExtension, pointwiseLeftKanExtensionIsPointwiseLeftKanExtension, pointwiseLeftKanExtensionIsUniversal, pointwiseLeftKanExtensionUnit, pointwiseRightKanExtension, pointwiseRightKanExtensionCounit, pointwiseRightKanExtensionIsPointwiseRightKanExtension, pointwiseRightKanExtensionIsUniversal, structuredArrowMapCone
40
TheoremshasLeftKanExtension, hasPointwiseLeftKanExtension, hom_ext, isIso_hom, isLeftKanExtension, comp_homEquiv_symm, comp_homEquiv_symm_assoc, hasPointwiseLeftKanExtensionAt, hom_ext', isIso_hom_app, ι_isoColimit_hom, ι_isoColimit_hom_assoc, ι_isoColimit_inv, ι_isoColimit_inv_assoc, coconeAtFunctor_map_hom, coconeAtFunctor_obj, coconeAt_pt, coconeAt_ι_app, instIsClosedUnderIsomorphismsIsPointwiseLeftKanExtensionAt, instSubsingletonIsPointwiseLeftKanExtensionAt, hasPointwiseRightKanExtension, hasRightKanExtension, hom_ext, isIso_hom, isRightKanExtension, hasPointwiseRightKanExtensionAt, hom_ext', isIso_hom_app, isoLimit_hom_π, isoLimit_hom_π_assoc, isoLimit_inv_π, isoLimit_inv_π_assoc, coneAtFunctor_map_hom, coneAtFunctor_obj, coneAt_pt, coneAt_π_app, instIsClosedUnderIsomorphismsIsPointwiseRightKanExtensionAt, instSubsingletonIsPointwiseRightKanExtensionAt, costructuredArrowMapCocone_pt, costructuredArrowMapCocone_ι_app, hasPointwiseLeftKanExtensionAt_iff_of_equivalence, hasPointwiseLeftKanExtensionAt_iff_of_iso, hasPointwiseLeftKanExtensionAt_iff_of_natIso, hasPointwiseLeftKanExtensionAt_of_equivalence, hasPointwiseRightKanExtensionAt_iff_of_equivalence, hasPointwiseRightKanExtensionAt_iff_of_iso, hasPointwiseRightKanExtensionAt_iff_of_natIso, hasPointwiseRightKanExtensionAt_of_equivalence, instHasLeftKanExtension, instHasRightKanExtension, instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit, instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit, pointwiseLeftKanExtensionUnit_app, pointwiseLeftKanExtension_desc_app, pointwiseLeftKanExtension_map, pointwiseLeftKanExtension_obj, pointwiseRightKanExtensionCounit_app, pointwiseRightKanExtension_lift_app, pointwiseRightKanExtension_map, pointwiseRightKanExtension_obj, structuredArrowMapCone_pt, structuredArrowMapCone_π_app
62
Total102

CategoryTheory.Functor

Definitions

NameCategoryTheorems
HasPointwiseLeftKanExtension 📖MathDef
3 mathmath: LeftExtension.IsPointwiseLeftKanExtension.hasPointwiseLeftKanExtension, hasPointwiseLeftKanExtension_of_hasPointwiseRightDerivedFunctor, CategoryTheory.TwoSquare.hasPointwiseLeftKanExtension_iff
HasPointwiseLeftKanExtensionAt 📖MathDef
9 mathmath: hasPointwiseLeftKanExtensionAt_iff_of_equivalence, hasPointwiseLeftKanExtensionAt_iff_of_natIso, CategoryTheory.TwoSquare.hasPointwiseLeftKanExtensionAt_iff, HasPointwiseRightDerivedFunctorAt.hasColimit, hasPointwiseLeftKanExtensionAt_iff_of_iso, HasPointwiseRightDerivedFunctorAt.hasColimit', hasPointwiseRightDerivedFunctorAt_iff, LeftExtension.IsPointwiseLeftKanExtensionAt.hasPointwiseLeftKanExtensionAt, hasPointwiseLeftKanExtensionAt_of_equivalence
HasPointwiseRightKanExtension 📖MathDef
2 mathmath: hasPointwiseRightKanExtension_of_hasPointwiseLeftDerivedFunctor, RightExtension.IsPointwiseRightKanExtension.hasPointwiseRightKanExtension
HasPointwiseRightKanExtensionAt 📖MathDef
8 mathmath: HasPointwiseLeftDerivedFunctorAt.hasLimit', RightExtension.IsPointwiseRightKanExtensionAt.hasPointwiseRightKanExtensionAt, hasPointwiseRightKanExtensionAt_iff_of_natIso, hasPointwiseRightKanExtensionAt_iff_of_iso, hasPointwiseLeftDerivedFunctorAt_iff, hasPointwiseRightKanExtensionAt_iff_of_equivalence, HasPointwiseLeftDerivedFunctorAt.hasLimit, hasPointwiseRightKanExtensionAt_of_equivalence
costructuredArrowMapCocone 📖CompOp
3 mathmath: costructuredArrowMapCocone_pt, pointwiseLeftKanExtension_desc_app, costructuredArrowMapCocone_ι_app
isPointwiseLeftKanExtensionOfIsLeftKanExtension 📖CompOp
isPointwiseRightKanExtensionOfIsRightKanExtension 📖CompOp
pointwiseLeftKanExtension 📖CompOp
15 mathmath: instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseLeftKanExtension_obj, pointwiseLeftKanExtension_map, pointwiseLeftKanExtensionUnit_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseLeftKanExtension_desc_app, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_isoPointwiseLeftKanExtension_hom, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, CategoryTheory.MonoidalCategory.DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseLeftKanExtensionIsPointwiseLeftKanExtension 📖CompOp
pointwiseLeftKanExtensionIsUniversal 📖CompOp
pointwiseLeftKanExtensionUnit 📖CompOp
11 mathmath: instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseLeftKanExtensionUnit_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseLeftKanExtension_desc_app, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseRightKanExtension 📖CompOp
13 mathmath: pointwiseRightKanExtension_lift_app, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app, pointwiseRightKanExtensionCounit_app, pointwiseRightKanExtension_obj, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtension_map, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac, instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
pointwiseRightKanExtensionCounit 📖CompOp
11 mathmath: pointwiseRightKanExtension_lift_app, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app, pointwiseRightKanExtensionCounit_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac, instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
pointwiseRightKanExtensionIsPointwiseRightKanExtension 📖CompOp
pointwiseRightKanExtensionIsUniversal 📖CompOp
structuredArrowMapCone 📖CompOp
3 mathmath: pointwiseRightKanExtension_lift_app, structuredArrowMapCone_pt, structuredArrowMapCone_π_app

Theorems

NameKindAssumesProvesValidatesDepends On
costructuredArrowMapCocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
costructuredArrowMapCocone
obj
costructuredArrowMapCocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.Cocone.ι
costructuredArrowMapCocone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
map
CategoryTheory.Comma.hom
hasPointwiseLeftKanExtensionAt_iff_of_equivalence 📖mathematicalHasPointwiseLeftKanExtensionAthasPointwiseLeftKanExtensionAt_of_equivalence
hasPointwiseLeftKanExtensionAt_iff_of_iso 📖mathematicalHasPointwiseLeftKanExtensionAtCategoryTheory.Limits.hasColimit_equivalence_comp
hasPointwiseLeftKanExtensionAt_iff_of_natIso 📖mathematicalHasPointwiseLeftKanExtensionAtCategoryTheory.Limits.hasColimit_of_iso
CategoryTheory.Limits.hasColimit_equivalence_comp
hasPointwiseLeftKanExtensionAt_of_equivalence 📖mathematicalHasPointwiseLeftKanExtensionAthasPointwiseLeftKanExtensionAt_iff_of_natIso
hasPointwiseLeftKanExtensionAt_iff_of_iso
CategoryTheory.CostructuredArrow.isEquivalence_post
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Limits.hasColimit_of_equivalence_comp
hasPointwiseRightKanExtensionAt_iff_of_equivalence 📖mathematicalHasPointwiseRightKanExtensionAthasPointwiseRightKanExtensionAt_of_equivalence
hasPointwiseRightKanExtensionAt_iff_of_iso 📖mathematicalHasPointwiseRightKanExtensionAtCategoryTheory.Limits.hasLimit_equivalence_comp
hasPointwiseRightKanExtensionAt_iff_of_natIso 📖mathematicalHasPointwiseRightKanExtensionAtCategoryTheory.Limits.hasLimit_of_iso
CategoryTheory.Limits.hasLimit_equivalence_comp
hasPointwiseRightKanExtensionAt_of_equivalence 📖mathematicalHasPointwiseRightKanExtensionAthasPointwiseRightKanExtensionAt_iff_of_natIso
hasPointwiseRightKanExtensionAt_iff_of_iso
CategoryTheory.StructuredArrow.isEquivalence_post
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Limits.hasLimit_of_equivalence_comp
instHasLeftKanExtension 📖mathematicalHasPointwiseLeftKanExtensionHasLeftKanExtensioninstIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit
instHasRightKanExtension 📖mathematicalHasPointwiseRightKanExtensionHasRightKanExtensioninstIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit 📖mathematicalHasPointwiseLeftKanExtensionIsLeftKanExtension
pointwiseLeftKanExtension
pointwiseLeftKanExtensionUnit
instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit 📖mathematicalHasPointwiseRightKanExtensionIsRightKanExtension
pointwiseRightKanExtension
pointwiseRightKanExtensionCounit
pointwiseLeftKanExtensionUnit_app 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.NatTrans.app
comp
pointwiseLeftKanExtension
pointwiseLeftKanExtensionUnit
CategoryTheory.Limits.colimit.ι
CategoryTheory.CostructuredArrow
obj
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
pointwiseLeftKanExtension_desc_app 📖mathematicalHasPointwiseLeftKanExtensionCategoryTheory.NatTrans.app
pointwiseLeftKanExtension
descOfIsLeftKanExtension
pointwiseLeftKanExtensionUnit
instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
costructuredArrowMapCocone
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ι_desc_assoc
CategoryTheory.Limits.colimit.ι_desc
map_comp
CategoryTheory.Category.assoc
instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit
hom_ext_of_isLeftKanExtension
descOfIsLeftKanExtension_fac
CategoryTheory.NatTrans.ext'
map_id
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.congr_app
pointwiseLeftKanExtension_map 📖mathematicalHasPointwiseLeftKanExtensionmap
pointwiseLeftKanExtension
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.colimit
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.colimit.ι
CategoryTheory.CostructuredArrow.map
pointwiseLeftKanExtension_obj 📖mathematicalHasPointwiseLeftKanExtensionobj
pointwiseLeftKanExtension
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
comp
CategoryTheory.CostructuredArrow.proj
pointwiseRightKanExtensionCounit_app 📖mathematicalHasPointwiseRightKanExtensionCategoryTheory.NatTrans.app
comp
pointwiseRightKanExtension
pointwiseRightKanExtensionCounit
CategoryTheory.Limits.limit.π
CategoryTheory.StructuredArrow
obj
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
pointwiseRightKanExtension_lift_app 📖mathematicalHasPointwiseRightKanExtensionCategoryTheory.NatTrans.app
pointwiseRightKanExtension
liftOfIsRightKanExtension
pointwiseRightKanExtensionCounit
instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
CategoryTheory.Limits.limit.lift
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
structuredArrowMapCone
CategoryTheory.Limits.limit.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
map_comp
instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit
hom_ext_of_isRightKanExtension
liftOfIsRightKanExtension_fac
CategoryTheory.NatTrans.ext'
map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
pointwiseRightKanExtension_map 📖mathematicalHasPointwiseRightKanExtensionmap
pointwiseRightKanExtension
CategoryTheory.Limits.limit.lift
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.limit
obj
CategoryTheory.Functor
category
const
CategoryTheory.Limits.limit.π
CategoryTheory.StructuredArrow.map
pointwiseRightKanExtension_obj 📖mathematicalHasPointwiseRightKanExtensionobj
pointwiseRightKanExtension
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
structuredArrowMapCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
comp
CategoryTheory.StructuredArrow.proj
structuredArrowMapCone
obj
structuredArrowMapCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
obj
CategoryTheory.Functor
category
const
comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
structuredArrowMapCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
map
CategoryTheory.Comma.hom

CategoryTheory.Functor.LeftExtension

Definitions

NameCategoryTheorems
IsPointwiseLeftKanExtension 📖CompOp
1 mathmath: CategoryTheory.Functor.isDense_iff_nonempty_isPointwiseLeftKanExtension
IsPointwiseLeftKanExtensionAt 📖CompOp
3 mathmath: instSubsingletonIsPointwiseLeftKanExtensionAt, nonempty_isPointwiseLeftKanExtensionAt_compTwoSquare_iff, CategoryTheory.Functor.PreservesPointwiseLeftKanExtensionAt.preserves
coconeAt 📖CompOp
9 mathmath: coconeAtFunctor_map_hom, coconeAtWhiskerRightIso_inv_hom, CategoryTheory.Functor.isDenseAt_iff, coconeAtFunctor_obj, coconeAtWhiskerRightIso_hom_hom, IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, coconeAt_pt, coconeAt_ι_app, IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc
coconeAtFunctor 📖CompOp
2 mathmath: coconeAtFunctor_map_hom, coconeAtFunctor_obj
isPointwiseLeftKanExtensionAt 📖CompOp
2 mathmath: CategoryTheory.Functor.isDenseAt_eq_isPointwiseLeftKanExtensionAt, instIsClosedUnderIsomorphismsIsPointwiseLeftKanExtensionAt
isPointwiseLeftKanExtensionAtEquivOfIso 📖CompOp
isPointwiseLeftKanExtensionAtEquivOfIso' 📖CompOp
isPointwiseLeftKanExtensionAtOfIso' 📖CompOp
isPointwiseLeftKanExtensionEquivOfIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coconeAtFunctor_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
coconeAt
CategoryTheory.Functor.map
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
coconeAtFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.right
coconeAtFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.Cocone
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.Cocone.category
coconeAtFunctor
coconeAt
coconeAt_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
coconeAt
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
coconeAt_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.Cocone.ι
coconeAt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
instIsClosedUnderIsomorphismsIsPointwiseLeftKanExtensionAt 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
isPointwiseLeftKanExtensionAt
instSubsingletonIsPointwiseLeftKanExtensionAt 📖mathematicalIsPointwiseLeftKanExtensionAtCategoryTheory.Limits.IsColimit.subsingleton

CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension

Definitions

NameCategoryTheorems
homFrom 📖CompOp
isUniversal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasLeftKanExtensionisLeftKanExtension
hasPointwiseLeftKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtensionCategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.hasPointwiseLeftKanExtensionAt
hom_ext 📖CategoryTheory.StructuredArrow.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.congr_app
CategoryTheory.StructuredArrow.w
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
Mathlib.Tactic.Reassoc.eq_whisker'
isIso_hom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app
CategoryTheory.NatIso.isIso_of_isIso_app
isLeftKanExtension 📖mathematicalCategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Comma.hom

CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt

Definitions

NameCategoryTheorems
isoColimit 📖CompOp
4 mathmath: ι_isoColimit_hom, ι_isoColimit_hom_assoc, ι_isoColimit_inv_assoc, ι_isoColimit_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_homEquiv_symm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.LeftExtension.coconeAt
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Limits.IsColimit.homEquiv
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm
comp_homEquiv_symm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.LeftExtension.coconeAt
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Limits.IsColimit.homEquiv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_homEquiv_symm
hasPointwiseLeftKanExtensionAt 📖mathematicalCategoryTheory.Functor.HasPointwiseLeftKanExtensionAt
hom_ext' 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Category.assoc
isIso_hom_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.isIso_ι_app_of_isTerminal
ι_isoColimit_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
isoColimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
ι_isoColimit_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.colimit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.hom
isoColimit
CategoryTheory.Limits.colimit.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_isoColimit_hom
ι_isoColimit_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.colimit
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.colimit.ι
CategoryTheory.Iso.inv
isoColimit
CategoryTheory.Comma.left
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv
ι_isoColimit_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.colimit
CategoryTheory.Functor.comp
CategoryTheory.Limits.colimit.ι
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.inv
isoColimit
CategoryTheory.Comma.left
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_isoColimit_inv

CategoryTheory.Functor.RightExtension

Definitions

NameCategoryTheorems
IsPointwiseRightKanExtension 📖CompOp
IsPointwiseRightKanExtensionAt 📖CompOp
2 mathmath: instSubsingletonIsPointwiseRightKanExtensionAt, CategoryTheory.Functor.PreservesPointwiseRightKanExtensionAt.preserves
coneAt 📖CompOp
6 mathmath: coneAt_pt, coneAt_π_app, coneAtFunctor_obj, coneAtWhiskerRightIso_inv_hom, coneAtFunctor_map_hom, coneAtWhiskerRightIso_hom_hom
coneAtFunctor 📖CompOp
2 mathmath: coneAtFunctor_obj, coneAtFunctor_map_hom
isPointwiseRightKanExtensionAt 📖CompOp
1 mathmath: instIsClosedUnderIsomorphismsIsPointwiseRightKanExtensionAt
isPointwiseRightKanExtensionAtEquivOfIso 📖CompOp
isPointwiseRightKanExtensionAtEquivOfIso' 📖CompOp
isPointwiseRightKanExtensionAtOfIso' 📖CompOp
isPointwiseRightKanExtensionEquivOfIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coneAtFunctor_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
coneAt
CategoryTheory.Functor.map
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
coneAtFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
coneAtFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Limits.Cone
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.category
coneAtFunctor
coneAt
coneAt_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
coneAt
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
coneAt_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
coneAt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
instIsClosedUnderIsomorphismsIsPointwiseRightKanExtensionAt 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
isPointwiseRightKanExtensionAt
instSubsingletonIsPointwiseRightKanExtensionAt 📖mathematicalIsPointwiseRightKanExtensionAtCategoryTheory.Limits.IsLimit.subsingleton

CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension

Definitions

NameCategoryTheorems
homTo 📖CompOp
isUniversal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasPointwiseRightKanExtension 📖mathematicalCategoryTheory.Functor.HasPointwiseRightKanExtensionCategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.hasPointwiseRightKanExtensionAt
hasRightKanExtension 📖mathematicalCategoryTheory.Functor.HasRightKanExtensionisRightKanExtension
hom_ext 📖CategoryTheory.CostructuredArrow.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.congr_app
CategoryTheory.CostructuredArrow.w
isIso_hom 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app
CategoryTheory.NatIso.isIso_of_isIso_app
isRightKanExtension 📖mathematicalCategoryTheory.Functor.IsRightKanExtension
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom

CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt

Definitions

NameCategoryTheorems
isoLimit 📖CompOp
4 mathmath: isoLimit_inv_π, isoLimit_inv_π_assoc, isoLimit_hom_π, isoLimit_hom_π_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
hasPointwiseRightKanExtensionAt 📖mathematicalCategoryTheory.Functor.HasPointwiseRightKanExtensionAt
hom_ext' 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Limits.IsLimit.hom_ext
isIso_hom_app 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.IsLimit.isIso_π_app_of_isInitial
isoLimit_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.hom
isoLimit
CategoryTheory.Limits.limit.π
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_hom_comp
isoLimit_hom_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Iso.hom
isoLimit
CategoryTheory.Limits.limit.π
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimit_hom_π
isoLimit_inv_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Iso.inv
isoLimit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.limit.π
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp
isoLimit_inv_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
CategoryTheory.Iso.inv
isoLimit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Limits.limit.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoLimit_inv_π

---

← Back to Index