Documentation Verification Report

Preserves

πŸ“ Source: Mathlib/CategoryTheory/Functor/KanExtension/Preserves.lean

Statistics

MetricCount
Definitionspostcompose, postcompose, coconeAtWhiskerRightIso, PreservesLeftKanExtension, PreservesLeftKanExtensions, PreservesPointwiseLeftKanExtension, PreservesPointwiseLeftKanExtensionAt, PreservesPointwiseLeftKanExtensions, PreservesPointwiseRightKanExtension, PreservesPointwiseRightKanExtensionAt, PreservesPointwiseRightKanExtensions, PreservesRightKanExtension, PreservesRightKanExtensions, postcompose, postcompose, coneAtWhiskerRightIso, lanCompIsoOfPreserves, leftKanExtensionCompIsoOfPreserves, pointwiseLeftKanExtensionCompIsoOfPreserves, pointwiseRightKanExtensionCompIsoOfPreserves, ranCompIsoOfPreserves, rightKanExtensionCompIsoOfPreserves
22
TheoremscoconeAtWhiskerRightIso_hom_hom, coconeAtWhiskerRightIso_inv_hom, mk', mk_of_preserves_isLeftKanExtension, mk_of_preserves_isUniversal, preserves, mk', preserves, mk', preserves, mk', mk_of_preserves_isRightKanExtension, mk_of_preserves_isUniversal, preserves, coneAtWhiskerRightIso_hom_hom, coneAtWhiskerRightIso_inv_hom, hasLeftKanExtension_of_preserves, hasPointwiseLeftKanExtension_of_preserves, hasPointwiseRightKanExtension_of_preserves, hasRightKanExtension_of_preserves, lanCompIsoOfPreserves_hom_app, lanCompIsoOfPreserves_inv_app, leftKanExtensionCompIsoOfPreserves_hom_fac, leftKanExtensionCompIsoOfPreserves_hom_fac_app, leftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac, leftKanExtensionCompIsoOfPreserves_inv_fac_app, leftKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, preservesPointwiseLKEOfHasPointwiseAndPreservesPointwise, preservesPointwiseLeftKanExtensionAtOfPreservesColimit, preservesPointwiseRKEOfHasPointwiseAndPreservesPointwise, preservesPointwiseRightKanExtensionAtOfPreservesLimit, ranCompIsoOfPreserves_hom_app, ranCompIsoOfPreserves_inv_app, rightKanExtensionCompIsoOfPreserves_hom_fac, rightKanExtensionCompIsoOfPreserves_hom_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac, rightKanExtensionCompIsoOfPreserves_inv_fac_app, rightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc
60
Total82

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PreservesLeftKanExtension πŸ“–CompData
4 mathmath: preservesPointwiseLKEOfHasPointwiseAndPreservesPointwise, PreservesLeftKanExtension.mk', PreservesLeftKanExtension.mk_of_preserves_isUniversal, PreservesLeftKanExtension.mk_of_preserves_isLeftKanExtension
PreservesLeftKanExtensions πŸ“–MathDefβ€”
PreservesPointwiseLeftKanExtension πŸ“–MathDefβ€”
PreservesPointwiseLeftKanExtensionAt πŸ“–CompData
2 mathmath: preservesPointwiseLeftKanExtensionAtOfPreservesColimit, PreservesPointwiseLeftKanExtensionAt.mk'
PreservesPointwiseLeftKanExtensions πŸ“–MathDefβ€”
PreservesPointwiseRightKanExtension πŸ“–MathDefβ€”
PreservesPointwiseRightKanExtensionAt πŸ“–CompData
2 mathmath: PreservesPointwiseRightKanExtensionAt.mk', preservesPointwiseRightKanExtensionAtOfPreservesLimit
PreservesPointwiseRightKanExtensions πŸ“–MathDefβ€”
PreservesRightKanExtension πŸ“–CompData
4 mathmath: PreservesRightKanExtension.mk', PreservesRightKanExtension.mk_of_preserves_isRightKanExtension, PreservesRightKanExtension.mk_of_preserves_isUniversal, preservesPointwiseRKEOfHasPointwiseAndPreservesPointwise
PreservesRightKanExtensions πŸ“–MathDefβ€”
lanCompIsoOfPreserves πŸ“–CompOp
2 mathmath: lanCompIsoOfPreserves_inv_app, lanCompIsoOfPreserves_hom_app
leftKanExtensionCompIsoOfPreserves πŸ“–CompOp
10 mathmath: leftKanExtensionCompIsoOfPreserves_hom_fac_app, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac, lanCompIsoOfPreserves_inv_app, leftKanExtensionCompIsoOfPreserves_inv_fac, lanCompIsoOfPreserves_hom_app, leftKanExtensionCompIsoOfPreserves_inv_fac_app
pointwiseLeftKanExtensionCompIsoOfPreserves πŸ“–CompOp
8 mathmath: pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseRightKanExtensionCompIsoOfPreserves πŸ“–CompOp
8 mathmath: pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac
ranCompIsoOfPreserves πŸ“–CompOp
2 mathmath: ranCompIsoOfPreserves_inv_app, ranCompIsoOfPreserves_hom_app
rightKanExtensionCompIsoOfPreserves πŸ“–CompOp
10 mathmath: rightKanExtensionCompIsoOfPreserves_inv_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app, rightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc, ranCompIsoOfPreserves_inv_app, ranCompIsoOfPreserves_hom_app, rightKanExtensionCompIsoOfPreserves_hom_fac, rightKanExtensionCompIsoOfPreserves_inv_fac, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanExtension_of_preserves πŸ“–mathematicalβ€”HasLeftKanExtension
comp
β€”PreservesLeftKanExtension.preserves
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
hasPointwiseLeftKanExtension_of_preserves πŸ“–mathematicalHasPointwiseLeftKanExtension
PreservesPointwiseLeftKanExtension
compβ€”LeftExtension.IsPointwiseLeftKanExtension.hasPointwiseLeftKanExtension
hasPointwiseRightKanExtension_of_preserves πŸ“–mathematicalHasPointwiseRightKanExtension
PreservesPointwiseRightKanExtension
compβ€”RightExtension.IsPointwiseRightKanExtension.hasPointwiseRightKanExtension
hasRightKanExtension_of_preserves πŸ“–mathematicalβ€”HasRightKanExtension
comp
β€”PreservesRightKanExtension.preserves
instIsRightKanExtensionRightKanExtensionRightKanExtensionCounit
lanCompIsoOfPreserves_hom_app πŸ“–mathematicalPreservesLeftKanExtensions
HasLeftKanExtension
CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
lan
obj
whiskeringRight
CategoryTheory.Iso.hom
lanCompIsoOfPreserves
leftKanExtensionCompIsoOfPreserves
β€”β€”
lanCompIsoOfPreserves_inv_app πŸ“–mathematicalPreservesLeftKanExtensions
HasLeftKanExtension
CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
obj
whiskeringRight
lan
CategoryTheory.Iso.inv
lanCompIsoOfPreserves
leftKanExtensionCompIsoOfPreserves
β€”β€”
leftKanExtensionCompIsoOfPreserves_hom_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
hasLeftKanExtension_of_preserves
whiskerRight
leftKanExtensionUnit
CategoryTheory.Iso.hom
associator
whiskerLeft
leftKanExtensionCompIsoOfPreserves
β€”hasLeftKanExtension_of_preserves
leftKanExtensionUnique_hom
PreservesLeftKanExtension.preserves
instIsLeftKanExtensionLeftKanExtensionLeftKanExtensionUnit
CategoryTheory.Category.assoc
descOfIsLeftKanExtension_fac
leftKanExtensionCompIsoOfPreserves_hom_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
leftKanExtension
hasLeftKanExtension_of_preserves
map
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftKanExtensionCompIsoOfPreserves
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
leftKanExtensionCompIsoOfPreserves_hom_fac
leftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftKanExtension
map
CategoryTheory.NatTrans.app
comp
leftKanExtensionUnit
hasLeftKanExtension_of_preserves
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
leftKanExtensionCompIsoOfPreserves
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftKanExtensionCompIsoOfPreserves_hom_fac_app
leftKanExtensionCompIsoOfPreserves_hom_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
whiskerRight
leftKanExtensionUnit
CategoryTheory.Iso.hom
associator
hasLeftKanExtension_of_preserves
whiskerLeft
leftKanExtensionCompIsoOfPreserves
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftKanExtensionCompIsoOfPreserves_hom_fac
leftKanExtensionCompIsoOfPreserves_inv_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
hasLeftKanExtension_of_preserves
leftKanExtensionUnit
whiskerLeft
CategoryTheory.Iso.inv
leftKanExtensionCompIsoOfPreserves
whiskerRight
CategoryTheory.Iso.hom
associator
β€”hasLeftKanExtension_of_preserves
leftKanExtensionUnique_inv
descOfIsLeftKanExtension_fac
leftKanExtensionCompIsoOfPreserves_inv_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
leftKanExtension
hasLeftKanExtension_of_preserves
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftKanExtensionCompIsoOfPreserves
map
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.congr_app
leftKanExtensionCompIsoOfPreserves_inv_fac
leftKanExtensionCompIsoOfPreserves_inv_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
leftKanExtension
comp
hasLeftKanExtension_of_preserves
CategoryTheory.NatTrans.app
leftKanExtensionUnit
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
leftKanExtensionCompIsoOfPreserves
map
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftKanExtensionCompIsoOfPreserves_inv_fac_app
leftKanExtensionCompIsoOfPreserves_inv_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
leftKanExtension
hasLeftKanExtension_of_preserves
leftKanExtensionUnit
whiskerLeft
CategoryTheory.Iso.inv
leftKanExtensionCompIsoOfPreserves
whiskerRight
CategoryTheory.Iso.hom
associator
β€”hasLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
pointwiseLeftKanExtension
hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.NatTrans.app
pointwiseLeftKanExtensionUnit
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
pointwiseLeftKanExtensionCompIsoOfPreserves
map
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.congr_app
pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app_assoc πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pointwiseLeftKanExtension
comp
hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.NatTrans.app
pointwiseLeftKanExtensionUnit
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
pointwiseLeftKanExtensionCompIsoOfPreserves
map
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseLeftKanExtension
hasPointwiseLeftKanExtension_of_preserves
whiskerRight
pointwiseLeftKanExtensionUnit
CategoryTheory.Iso.hom
associator
whiskerLeft
pointwiseLeftKanExtensionCompIsoOfPreserves
β€”hasPointwiseLeftKanExtension_of_preserves
leftKanExtensionUnique_hom
PreservesLeftKanExtension.preserves
preservesPointwiseLKEOfHasPointwiseAndPreservesPointwise
instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit
CategoryTheory.Category.assoc
descOfIsLeftKanExtension_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
pointwiseLeftKanExtension
hasPointwiseLeftKanExtension_of_preserves
map
CategoryTheory.NatTrans.app
pointwiseLeftKanExtensionUnit
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
pointwiseLeftKanExtensionCompIsoOfPreserves
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app_assoc πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pointwiseLeftKanExtension
map
CategoryTheory.NatTrans.app
comp
pointwiseLeftKanExtensionUnit
hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
pointwiseLeftKanExtensionCompIsoOfPreserves
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_app
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseLeftKanExtension
whiskerRight
pointwiseLeftKanExtensionUnit
CategoryTheory.Iso.hom
associator
hasPointwiseLeftKanExtension_of_preserves
whiskerLeft
pointwiseLeftKanExtensionCompIsoOfPreserves
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseLeftKanExtension
hasPointwiseLeftKanExtension_of_preserves
pointwiseLeftKanExtensionUnit
whiskerLeft
CategoryTheory.Iso.inv
pointwiseLeftKanExtensionCompIsoOfPreserves
whiskerRight
CategoryTheory.Iso.hom
associator
β€”hasPointwiseLeftKanExtension_of_preserves
leftKanExtensionUnique_inv
descOfIsLeftKanExtension_fac
pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc πŸ“–mathematicalPreservesPointwiseLeftKanExtension
HasPointwiseLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseLeftKanExtension
hasPointwiseLeftKanExtension_of_preserves
pointwiseLeftKanExtensionUnit
whiskerLeft
CategoryTheory.Iso.inv
pointwiseLeftKanExtensionCompIsoOfPreserves
whiskerRight
CategoryTheory.Iso.hom
associator
β€”hasPointwiseLeftKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseRightKanExtension
hasPointwiseRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.hom
pointwiseRightKanExtensionCompIsoOfPreserves
pointwiseRightKanExtensionCounit
CategoryTheory.Iso.inv
associator
whiskerRight
β€”hasPointwiseRightKanExtension_of_preserves
rightKanExtensionUnique_hom
liftOfIsRightKanExtension_fac
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
pointwiseRightKanExtension
hasPointwiseRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
pointwiseRightKanExtensionCompIsoOfPreserves
pointwiseRightKanExtensionCounit
map
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pointwiseRightKanExtension
comp
hasPointwiseRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
pointwiseRightKanExtensionCompIsoOfPreserves
pointwiseRightKanExtensionCounit
map
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_app
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseRightKanExtension
hasPointwiseRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.hom
pointwiseRightKanExtensionCompIsoOfPreserves
pointwiseRightKanExtensionCounit
CategoryTheory.Iso.inv
associator
whiskerRight
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseRightKanExtension
hasPointwiseRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.inv
pointwiseRightKanExtensionCompIsoOfPreserves
associator
whiskerRight
pointwiseRightKanExtensionCounit
β€”hasPointwiseRightKanExtension_of_preserves
rightKanExtensionUnique_inv
liftOfIsRightKanExtension_fac
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pointwiseRightKanExtension
comp
hasPointwiseRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
pointwiseRightKanExtensionCompIsoOfPreserves
map
pointwiseRightKanExtensionCounit
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
pointwiseRightKanExtension
comp
hasPointwiseRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
pointwiseRightKanExtensionCompIsoOfPreserves
map
pointwiseRightKanExtensionCounit
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_app
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc πŸ“–mathematicalPreservesPointwiseRightKanExtension
HasPointwiseRightKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
pointwiseRightKanExtension
hasPointwiseRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.inv
pointwiseRightKanExtensionCompIsoOfPreserves
associator
whiskerRight
pointwiseRightKanExtensionCounit
β€”hasPointwiseRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac
preservesPointwiseLKEOfHasPointwiseAndPreservesPointwise πŸ“–mathematicalHasPointwiseLeftKanExtension
PreservesPointwiseLeftKanExtension
PreservesLeftKanExtensionβ€”LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension
preservesPointwiseLeftKanExtensionAtOfPreservesColimit πŸ“–mathematicalβ€”PreservesPointwiseLeftKanExtensionAtβ€”CategoryTheory.Limits.PreservesColimit.preserves
preservesPointwiseRKEOfHasPointwiseAndPreservesPointwise πŸ“–mathematicalHasPointwiseRightKanExtension
PreservesPointwiseRightKanExtension
PreservesRightKanExtensionβ€”RightExtension.IsPointwiseRightKanExtension.isRightKanExtension
preservesPointwiseRightKanExtensionAtOfPreservesLimit πŸ“–mathematicalβ€”PreservesPointwiseRightKanExtensionAtβ€”CategoryTheory.Limits.PreservesLimit.preserves
ranCompIsoOfPreserves_hom_app πŸ“–mathematicalPreservesRightKanExtensions
HasRightKanExtension
CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
ran
obj
whiskeringRight
CategoryTheory.Iso.hom
ranCompIsoOfPreserves
rightKanExtensionCompIsoOfPreserves
β€”β€”
ranCompIsoOfPreserves_inv_app πŸ“–mathematicalPreservesRightKanExtensions
HasRightKanExtension
CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
comp
obj
whiskeringRight
ran
CategoryTheory.Iso.inv
ranCompIsoOfPreserves
rightKanExtensionCompIsoOfPreserves
β€”β€”
rightKanExtensionCompIsoOfPreserves_hom_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
hasRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.hom
rightKanExtensionCompIsoOfPreserves
rightKanExtensionCounit
CategoryTheory.Iso.inv
associator
whiskerRight
β€”hasRightKanExtension_of_preserves
rightKanExtensionUnique_hom
liftOfIsRightKanExtension_fac
rightKanExtensionCompIsoOfPreserves_hom_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
comp
rightKanExtension
hasRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightKanExtensionCompIsoOfPreserves
rightKanExtensionCounit
map
β€”hasRightKanExtension_of_preserves
rightKanExtensionUnique_hom
liftOfIsRightKanExtension_fac_app
CategoryTheory.Category.id_comp
rightKanExtensionCompIsoOfPreserves_hom_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightKanExtension
comp
hasRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
rightKanExtensionCompIsoOfPreserves
rightKanExtensionCounit
map
β€”hasRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightKanExtensionCompIsoOfPreserves_hom_fac_app
rightKanExtensionCompIsoOfPreserves_hom_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
hasRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.hom
rightKanExtensionCompIsoOfPreserves
rightKanExtensionCounit
CategoryTheory.Iso.inv
associator
whiskerRight
β€”hasRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightKanExtensionCompIsoOfPreserves_hom_fac
rightKanExtensionCompIsoOfPreserves_inv_fac πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
hasRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.inv
rightKanExtensionCompIsoOfPreserves
associator
whiskerRight
rightKanExtensionCounit
β€”hasRightKanExtension_of_preserves
rightKanExtensionUnique_inv
liftOfIsRightKanExtension_fac
rightKanExtensionCompIsoOfPreserves_inv_fac_app πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightKanExtension
comp
hasRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightKanExtensionCompIsoOfPreserves
map
rightKanExtensionCounit
β€”hasRightKanExtension_of_preserves
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.congr_app
rightKanExtensionCompIsoOfPreserves_inv_fac
rightKanExtensionCompIsoOfPreserves_inv_fac_app_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
rightKanExtension
comp
hasRightKanExtension_of_preserves
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
rightKanExtensionCompIsoOfPreserves
map
rightKanExtensionCounit
β€”hasRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightKanExtensionCompIsoOfPreserves_inv_fac_app
rightKanExtensionCompIsoOfPreserves_inv_fac_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
rightKanExtension
hasRightKanExtension_of_preserves
whiskerLeft
CategoryTheory.Iso.inv
rightKanExtensionCompIsoOfPreserves
associator
whiskerRight
rightKanExtensionCounit
β€”hasRightKanExtension_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightKanExtensionCompIsoOfPreserves_inv_fac

CategoryTheory.Functor.LeftExtension

Definitions

NameCategoryTheorems
coconeAtWhiskerRightIso πŸ“–CompOp
2 mathmath: coconeAtWhiskerRightIso_inv_hom, coconeAtWhiskerRightIso_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coconeAtWhiskerRightIso_hom_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
coconeAt
CategoryTheory.Functor.obj
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
postcomposeβ‚‚
CategoryTheory.Functor.mapCocone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
coconeAtWhiskerRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
coconeAtWhiskerRightIso_inv_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.mapCocone
coconeAt
CategoryTheory.Functor.obj
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
postcomposeβ‚‚
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
coconeAtWhiskerRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”

CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension

Definitions

NameCategoryTheorems
postcompose πŸ“–CompOpβ€”

CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt

Definitions

NameCategoryTheorems
postcompose πŸ“–CompOpβ€”

CategoryTheory.Functor.PreservesLeftKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
mk' πŸ“–mathematicalCategoryTheory.StructuredArrow.IsUniversal
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.LeftExtension.postcomposeβ‚‚
CategoryTheory.Functor.PreservesLeftKanExtensionβ€”CategoryTheory.Functor.IsLeftKanExtension.nonempty_isUniversal
mk_of_preserves_isLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesLeftKanExtensionβ€”CategoryTheory.Functor.isLeftKanExtension_of_iso
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.leftKanExtensionUnique_hom
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
CategoryTheory.Category.comp_id
mk_of_preserves_isUniversal πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesLeftKanExtensionβ€”mk'
preserves πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
β€”β€”

CategoryTheory.Functor.PreservesPointwiseLeftKanExtensionAt

Theorems

NameKindAssumesProvesValidatesDepends On
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesPointwiseLeftKanExtensionAtβ€”β€”
preserves πŸ“–mathematicalβ€”CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.LeftExtension
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.LeftExtension.postcomposeβ‚‚
β€”β€”

CategoryTheory.Functor.PreservesPointwiseRightKanExtensionAt

Theorems

NameKindAssumesProvesValidatesDepends On
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesPointwiseRightKanExtensionAtβ€”β€”
preserves πŸ“–mathematicalβ€”CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.RightExtension.postcomposeβ‚‚
β€”β€”

CategoryTheory.Functor.PreservesRightKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
mk' πŸ“–mathematicalCategoryTheory.CostructuredArrow.IsUniversal
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.RightExtension.postcomposeβ‚‚
CategoryTheory.Functor.PreservesRightKanExtensionβ€”CategoryTheory.Functor.IsRightKanExtension.nonempty_isUniversal
mk_of_preserves_isRightKanExtension πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesRightKanExtensionβ€”CategoryTheory.Functor.isRightKanExtension_of_iso
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.rightKanExtensionUnique_hom
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.liftOfIsRightKanExtension_fac_app
mk_of_preserves_isUniversal πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesRightKanExtensionβ€”mk'
preserves πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightKanExtension
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
β€”β€”

CategoryTheory.Functor.RightExtension

Definitions

NameCategoryTheorems
coneAtWhiskerRightIso πŸ“–CompOp
2 mathmath: coneAtWhiskerRightIso_inv_hom, coneAtWhiskerRightIso_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coneAtWhiskerRightIso_hom_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
coneAt
CategoryTheory.Functor.obj
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
postcomposeβ‚‚
CategoryTheory.Functor.mapCone
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
coneAtWhiskerRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
coneAtWhiskerRightIso_inv_hom πŸ“–mathematicalβ€”CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.mapCone
coneAt
CategoryTheory.Functor.obj
CategoryTheory.Functor.RightExtension
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringLeft
postcomposeβ‚‚
CategoryTheory.Iso.inv
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
coneAtWhiskerRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”

CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension

Definitions

NameCategoryTheorems
postcompose πŸ“–CompOpβ€”

CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt

Definitions

NameCategoryTheorems
postcompose πŸ“–CompOpβ€”

---

← Back to Index