Documentation Verification Report

OfSequence

📁 Source: Mathlib/CategoryTheory/Functor/OfSequence.lean

Statistics

MetricCount
Definitionsmap, ofOpSequence, ofSequence, ofOpSequence, ofSequence
5
Theoremscongr_f, map_comp, map_comp_assoc, map_id, map_le_succ, ofOpSequence_map_homOfLE_succ, ofOpSequence_obj, ofSequence_map_homOfLE_succ, ofSequence_obj, ofOpSequence_app, ofSequence_app
11
Total16

CategoryTheory.Functor

Definitions

NameCategoryTheorems
ofOpSequence 📖CompOp
10 mathmath: CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos_assoc, CategoryTheory.Limits.SequentialProduct.functorMap_commSq_aux, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg_assoc, ofOpSequence_obj, ofOpSequence_map_homOfLE_succ, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_pos, CategoryTheory.Limits.SequentialProduct.cone_π_app, CategoryTheory.Limits.SequentialProduct.functorMap_commSq_succ, CategoryTheory.Limits.SequentialProduct.cone_π_app_comp_Pi_π_neg, CategoryTheory.Limits.SequentialProduct.functorMap_commSq
ofSequence 📖CompOp
2 mathmath: ofSequence_map_homOfLE_succ, ofSequence_obj

Theorems

NameKindAssumesProvesValidatesDepends On
ofOpSequence_map_homOfLE_succ 📖mathematicalmap
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
ofOpSequence
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
ofSequence_map_homOfLE_succ
ofOpSequence_obj 📖mathematicalobj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
ofOpSequence
Opposite.unop
ofSequence_map_homOfLE_succ 📖mathematicalmap
Preorder.smallCategory
Nat.instPreorder
ofSequence
CategoryTheory.homOfLE
OfSequence.map_le_succ
ofSequence_obj 📖mathematicalobj
Preorder.smallCategory
Nat.instPreorder
ofSequence

CategoryTheory.Functor.OfSequence

Definitions

NameCategoryTheorems
map 📖CompOp
4 mathmath: map_le_succ, map_comp_assoc, map_comp, map_id

Theorems

NameKindAssumesProvesValidatesDepends On
congr_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_comp 📖mathematicalmap
LE.le.trans
Nat.instPreorder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LE.le.trans
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map.eq_3
CategoryTheory.Category.assoc
map_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
map
LE.le.trans
Nat.instPreorder
LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
map_le_succ 📖mathematicalmap

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
ofOpSequence 📖CompOp
1 mathmath: ofOpSequence_app
ofSequence 📖CompOp
1 mathmath: ofSequence_app

Theorems

NameKindAssumesProvesValidatesDepends On
ofOpSequence_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.homOfLE
app
ofOpSequence
Opposite.unop
ofSequence_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Functor.map
CategoryTheory.homOfLE
app
ofSequence

---

← Back to Index