Documentation Verification Report

TwoSquare

πŸ“ Source: Mathlib/CategoryTheory/Functor/TwoSquare.lean

Statistics

MetricCount
DefinitionsTwoSquare, equivNatTrans, hComp, hId, mk, natTrans, op, vComp, vId, whiskerBottom, whiskerLeft, whiskerRight, whiskerTop, Β«term_≫α΅₯_Β», Β«term_≫ₕ_Β», Β«termπŸ™α΅₯Β», Β«termπŸ™β‚•Β»
17
TheoremsequivNatTrans_apply, equivNatTrans_symm_apply, ext, ext_iff, hCompVCompHComp, hComp_app, hId_app, natTrans_op, vComp_app, vId_app, whiskerBottom_app, whiskerLeft_app, whiskerRight_app, whiskerTop_app
14
Total31

CategoryTheory

Definitions

NameCategoryTheorems
TwoSquare πŸ“–CompOp
16 mathmath: TwoSquare.equivNatTrans_symm_apply, mateEquiv_counit_symm, iterated_mateEquiv_conjugateEquiv, iterated_mateEquiv_conjugateEquiv_symm, TwoSquare.equivNatTrans_apply, mateEquiv_hcomp, mateEquiv_symm_apply, conjugateEquiv_mateEquiv_vcomp, mateEquiv_conjugateEquiv_vcomp, Bicategory.toNatTrans_mateEquiv, unit_mateEquiv_symm, unit_mateEquiv, mateEquiv_vcomp, mateEquiv_counit, mateEquiv_square, mateEquiv_apply

CategoryTheory.TwoSquare

Definitions

NameCategoryTheorems
equivNatTrans πŸ“–CompOp
3 mathmath: equivNatTrans_symm_apply, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, equivNatTrans_apply
hComp πŸ“–CompOp
5 mathmath: CategoryTheory.mateEquiv_hcomp, hComp_app, hCompVCompHComp, CategoryTheory.mateEquiv_vcomp, CategoryTheory.mateEquiv_square
hId πŸ“–CompOp
1 mathmath: hId_app
mk πŸ“–CompOpβ€”
natTrans πŸ“–CompOp
26 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.iterated_mateEquiv_conjugateEquiv, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivNatTrans_apply, CategoryTheory.coev_expComparison, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.MonoidalClosedFunctor.comparison_iso, whiskerVertical_app, whiskerBottom_app, hComp_app, natTrans_op, CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.uncurry_expComparison, structuredArrowRightwardsOpEquivalence.functor_map_left_right, whiskerLeft_app, CategoryTheory.expComparison_ev, whiskerTop_app, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, whiskerRight_app, CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso, vComp_app, vComp'_app, ext_iff, CategoryTheory.mateEquiv_apply
op πŸ“–CompOp
13 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, structuredArrowRightwardsOpEquivalence_counitIso, guitartExact_op_iff, natTrans_op, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, instGuitartExactOppositeOp, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
vComp πŸ“–CompOp
7 mathmath: GuitartExact.vComp_iff_of_equivalences, CategoryTheory.mateEquiv_hcomp, hCompVCompHComp, CategoryTheory.mateEquiv_vcomp, vComp_app, GuitartExact.vComp, CategoryTheory.mateEquiv_square
vId πŸ“–CompOp
1 mathmath: vId_app
whiskerBottom πŸ“–CompOp
3 mathmath: CategoryTheory.expComparison_whiskerLeft, whiskerBottom_app, CategoryTheory.mateEquiv_conjugateEquiv_vcomp
whiskerLeft πŸ“–CompOp
2 mathmath: CategoryTheory.conjugateEquiv_mateEquiv_vcomp, whiskerLeft_app
whiskerRight πŸ“–CompOp
2 mathmath: CategoryTheory.mateEquiv_conjugateEquiv_vcomp, whiskerRight_app
whiskerTop πŸ“–CompOp
3 mathmath: CategoryTheory.expComparison_whiskerLeft, CategoryTheory.conjugateEquiv_mateEquiv_vcomp, whiskerTop_app
Β«term_≫α΅₯_Β» πŸ“–CompOpβ€”
Β«term_≫ₕ_Β» πŸ“–CompOpβ€”
Β«termπŸ™α΅₯Β» πŸ“–CompOpβ€”
Β«termπŸ™β‚•Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
equivNatTrans_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.TwoSquare
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
equivNatTrans
natTrans
β€”β€”
equivNatTrans_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivNatTrans
β€”β€”
ext πŸ“–β€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
natTrans
β€”β€”CategoryTheory.NatTrans.ext
ext_iff πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
natTrans
β€”ext
hCompVCompHComp πŸ“–mathematicalβ€”vComp
CategoryTheory.Functor.comp
hComp
β€”ext
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Functor.comp_map
CategoryTheory.NatTrans.naturality
hComp_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
hComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
natTrans
CategoryTheory.Functor.map
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
hId_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
hId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
natTrans_op πŸ“–mathematicalβ€”natTrans
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
op
CategoryTheory.NatTrans.op
CategoryTheory.Functor.comp
β€”β€”
vComp_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
vComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
natTrans
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
vId_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
vId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
whiskerBottom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
whiskerBottom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
natTrans
β€”β€”
whiskerLeft_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
natTrans
CategoryTheory.Functor.map
β€”β€”
whiskerRight_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
natTrans
β€”β€”
whiskerTop_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
whiskerTop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
natTrans
β€”β€”

---

← Back to Index