| Name | Category | Theorems |
equivNatTrans π | CompOp | 3 mathmath: equivNatTrans_symm_apply, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, equivNatTrans_apply
|
hComp π | CompOp | 5 mathmath: CategoryTheory.mateEquiv_hcomp, hComp_app, hCompVCompHComp, CategoryTheory.mateEquiv_vcomp, CategoryTheory.mateEquiv_square
|
hId π | CompOp | 1 mathmath: hId_app
|
mk π | CompOp | β |
natTrans π | CompOp | 26 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.iterated_mateEquiv_conjugateEquiv, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, equivNatTrans_apply, CategoryTheory.coev_expComparison, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.MonoidalClosedFunctor.comparison_iso, whiskerVertical_app, whiskerBottom_app, hComp_app, natTrans_op, CategoryTheory.frobeniusMorphism_iso_of_preserves_binary_products, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.uncurry_expComparison, structuredArrowRightwardsOpEquivalence.functor_map_left_right, whiskerLeft_app, CategoryTheory.expComparison_ev, whiskerTop_app, CategoryTheory.expComparison_iso_of_frobeniusMorphism_iso, whiskerRight_app, CategoryTheory.frobeniusMorphism_iso_of_expComparison_iso, vComp_app, vComp'_app, ext_iff, CategoryTheory.mateEquiv_apply
|
op π | CompOp | 13 mathmath: structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, structuredArrowRightwardsOpEquivalence_inverse, structuredArrowRightwardsOpEquivalence.functor_obj_right_as, structuredArrowRightwardsOpEquivalence.functor_obj_left_right, structuredArrowRightwardsOpEquivalence_counitIso, guitartExact_op_iff, natTrans_op, structuredArrowRightwardsOpEquivalence.functor_map_left_right, structuredArrowRightwardsOpEquivalence_unitIso, instGuitartExactOppositeOp, structuredArrowRightwardsOpEquivalence_functor, structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as
|
vComp π | CompOp | 7 mathmath: GuitartExact.vComp_iff_of_equivalences, CategoryTheory.mateEquiv_hcomp, hCompVCompHComp, CategoryTheory.mateEquiv_vcomp, vComp_app, GuitartExact.vComp, CategoryTheory.mateEquiv_square
|
vId π | CompOp | 1 mathmath: vId_app
|
whiskerBottom π | CompOp | 3 mathmath: CategoryTheory.expComparison_whiskerLeft, whiskerBottom_app, CategoryTheory.mateEquiv_conjugateEquiv_vcomp
|
whiskerLeft π | CompOp | 2 mathmath: CategoryTheory.conjugateEquiv_mateEquiv_vcomp, whiskerLeft_app
|
whiskerRight π | CompOp | 2 mathmath: CategoryTheory.mateEquiv_conjugateEquiv_vcomp, whiskerRight_app
|
whiskerTop π | CompOp | 3 mathmath: CategoryTheory.expComparison_whiskerLeft, CategoryTheory.conjugateEquiv_mateEquiv_vcomp, whiskerTop_app
|
Β«term_β«α΅₯_Β» π | CompOp | β |
Β«term_β«β_Β» π | CompOp | β |
Β«termπα΅₯Β» π | CompOp | β |
Β«termπβΒ» π | CompOp | β |