📁 Source: Mathlib/CategoryTheory/Galois/Action.lean
functorToAction
instMulActionAutCarrierVFintypeCatFunctorObjActionFunctorToAction
functorToAction_comp_forget₂_eq
functorToAction_map
instFaithfulActionFintypeCatAutFunctorFunctorToAction
instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois
instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite
instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction
instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction
instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction
instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction
instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction
instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction
functorToContAction_map
exists_lift_of_continuous
exists_lift_of_mono_of_isConnected
exists_lift_of_mono
functorToContAction_obj_obj
exists_lift_of_quotient_openSubgroup
functorToAction_full
CategoryTheory.Functor.comp
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
CategoryTheory.forget₂
Action.HomSubtype
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
FintypeCat.concreteCategoryFintype
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
Action.Hom.hom
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.Faithful
CategoryTheory.GaloisCategory.toPreGaloisCategory
FiberFunctor.instFaithfulFintypeCat
CategoryTheory.Functor.Faithful.of_comp
MulAction.IsPretransitive
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
isPretransitive_of_isGalois
CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action.preservesColimitsOfShape_of_preserves
FiberFunctor.instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite
CategoryTheory.Limits.PreservesFiniteCoproducts
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
Finite.of_fintype
FiberFunctor.preservesFiniteCoproducts
CategoryTheory.Limits.PreservesFiniteProducts
Action.preservesLimitsOfShape_of_preserves
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
FiberFunctor.instPreservesFiniteLimitsFintypeCat
PreservesIsConnected
CategoryTheory.FintypeCat.Action.isConnected_of_transitive
FiberFunctor.isPretransitive_of_isConnected
nonempty_fiber_of_isConnected
CategoryTheory.Functor.PreservesMonomorphisms
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
FiberFunctor.preservesPullbacks
CategoryTheory.Functor.preservesMonomorphisms_of_preserves_of_reflects
FiberFunctor.instReflectsMonomorphismsFintypeCat
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV
CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_of_reflects_iso
FiberFunctor.reflectsIsos
CategoryTheory.Functor.ReflectsMonomorphisms
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
---
← Back to Index