Documentation Verification Report

Action

📁 Source: Mathlib/CategoryTheory/Galois/Action.lean

Statistics

MetricCount
DefinitionsfunctorToAction, instMulActionAutCarrierVFintypeCatFunctorObjActionFunctorToAction
2
TheoremsfunctorToAction_comp_forget₂_eq, functorToAction_map, instFaithfulActionFintypeCatAutFunctorFunctorToAction, instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction
11
Total13

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
functorToAction 📖CompOp
18 mathmath: instFaithfulActionFintypeCatAutFunctorFunctorToAction, functorToContAction_map, instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, exists_lift_of_continuous, exists_lift_of_mono_of_isConnected, instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, functorToAction_map, instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, exists_lift_of_mono, functorToContAction_obj_obj, exists_lift_of_quotient_openSubgroup, instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, functorToAction_full, instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, functorToAction_comp_forget₂_eq
instMulActionAutCarrierVFintypeCatFunctorObjActionFunctorToAction 📖CompOp
1 mathmath: instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois

Theorems

NameKindAssumesProvesValidatesDepends On
functorToAction_comp_forget₂_eq 📖mathematicalCategoryTheory.Functor.comp
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.forget₂
Action.HomSubtype
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
FintypeCat.concreteCategoryFintype
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
functorToAction_map 📖mathematicalAction.Hom.hom
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.Functor.obj
Action
Action.instCategory
functorToAction
CategoryTheory.Functor.map
instFaithfulActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Functor.Faithful
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
FiberFunctor.instFaithfulFintypeCat
CategoryTheory.Functor.Faithful.of_comp
instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois 📖mathematicalMulAction.IsPretransitive
CategoryTheory.Aut
FintypeCat.carrier
Action.V
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.Functor.obj
Action
Action.instCategory
functorToAction
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
instMulActionAutCarrierVFintypeCatFunctorObjActionFunctorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
isPretransitive_of_isGalois
instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
Action.preservesColimitsOfShape_of_preserves
FiberFunctor.instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite
instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Limits.PreservesFiniteCoproducts
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
Action.preservesColimitsOfShape_of_preserves
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
Finite.of_fintype
FiberFunctor.preservesFiniteCoproducts
instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
Action.preservesLimitsOfShape_of_preserves
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
FiberFunctor.instPreservesFiniteLimitsFintypeCat
instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction 📖mathematicalPreservesIsConnected
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.FintypeCat.Action.isConnected_of_transitive
FiberFunctor.isPretransitive_of_isConnected
nonempty_fiber_of_isConnected
instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Functor.PreservesMonomorphisms
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
FiberFunctor.preservesPullbacks
CategoryTheory.Functor.preservesMonomorphisms_of_preserves_of_reflects
FiberFunctor.instReflectsMonomorphismsFintypeCat
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV
instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_of_reflects_iso
FiberFunctor.reflectsIsos
instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction 📖mathematicalCategoryTheory.Functor.ReflectsMonomorphisms
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
instFaithfulActionFintypeCatAutFunctorFunctorToAction

---

← Back to Index