Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Galois/Basic.lean

Statistics

MetricCount
DefinitionsGaloisCategory, PreGaloisCategory, FiberFunctor, getFiberFunctor, PreservesIsConnected, fiberBinaryProductEquiv, fiberEqualizerEquiv, fiberPullbackEquiv, instMulActionAutFunctorFintypeCatCarrierObj
9
TheoremshasFiberFunctor, toPreGaloisCategory, comp_right, instFaithfulFintypeCat, instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite, instPreservesFiniteLimitsFintypeCat, instReflectsColimitsOfShapeFintypeCatDiscretePEmpty, instReflectsLimitsOfShapeFintypeCatDiscretePEmpty, instReflectsMonomorphismsFintypeCat, preservesEpis, preservesFiniteCoproducts, preservesPullbacks, preservesQuotientsByFiniteGroups, preservesTerminalObjects, reflectsIsos, noTrivialComponent, notInitial, preserves, card_aut_le_card_fiber_of_connected, card_fiber_coprod_eq_sum, card_fiber_eq_of_iso, card_hom_le_card_fiber_of_connected, epi_of_nonempty_of_isConnected, evaluation_aut_injective_of_isConnected, evaluation_injective_of_isConnected, fiberBinaryProductEquiv_symm_fst_apply, fiberBinaryProductEquiv_symm_snd_apply, fiberEqualizerEquiv_symm_ΞΉ_apply, fiberPullbackEquiv_symm_fst_apply, fiberPullbackEquiv_symm_snd_apply, hasFiniteCoproducts, hasPullbacks, hasQuotientsByFiniteGroups, hasTerminal, has_non_trivial_subobject_of_not_isConnected_of_not_initial, initial_iff_fiber_empty, instFiberFunctorGetFiberFunctor, instFiniteAutOfIsConnected, instFiniteHomOfIsConnected, instHasBinaryProducts, instHasColimitsOfShapeSingleObjOfFinite, instHasEqualizers, instHasFiniteLimits, instMonoCoprod, isIso_of_mono_of_eq_card_fiber, lt_card_fiber_of_mono_of_notIso, monoInducesIsoOnDirectSummand, mulAction_def, mulAction_naturality, non_zero_card_fiber_of_not_initial, nonempty_fiber_of_isConnected, nonempty_fiber_pi_of_nonempty_of_finite, not_initial_iff_fiber_nonempty, not_initial_of_inhabited, surjective_of_nonempty_fiber_of_isConnected, surjective_on_fiber_of_epi
56
Total65

CategoryTheory

Definitions

NameCategoryTheorems
GaloisCategory πŸ“–CompData
1 mathmath: FintypeCat.instGaloisCategoryActionFintypeCat
PreGaloisCategory πŸ“–CompData
2 mathmath: GaloisCategory.toPreGaloisCategory, FintypeCat.instPreGaloisCategoryActionFintypeCat

CategoryTheory.GaloisCategory

Theorems

NameKindAssumesProvesValidatesDepends On
hasFiberFunctor πŸ“–mathematicalβ€”CategoryTheory.PreGaloisCategory.FiberFunctor
toPreGaloisCategory
β€”β€”
toPreGaloisCategory πŸ“–mathematicalβ€”CategoryTheory.PreGaloisCategoryβ€”β€”

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
FiberFunctor πŸ“–CompData
5 mathmath: CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, instFiberFunctorGetFiberFunctor, FiberFunctor.comp_right, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForgetβ‚‚HomSubtypeHomCarrierV, CategoryTheory.GaloisCategory.hasFiberFunctor
PreservesIsConnected πŸ“–CompData
1 mathmath: instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction
fiberBinaryProductEquiv πŸ“–CompOp
2 mathmath: fiberBinaryProductEquiv_symm_fst_apply, fiberBinaryProductEquiv_symm_snd_apply
fiberEqualizerEquiv πŸ“–CompOp
1 mathmath: fiberEqualizerEquiv_symm_ΞΉ_apply
fiberPullbackEquiv πŸ“–CompOp
2 mathmath: fiberPullbackEquiv_symm_fst_apply, fiberPullbackEquiv_symm_snd_apply
instMulActionAutFunctorFintypeCatCarrierObj πŸ“–CompOp
8 mathmath: mulAction_def, instIsFundamentalGroupAutFunctorFintypeCat, continuousSMul_aut_fiber, FiberFunctor.isPretransitive_of_isConnected, nhds_one_has_basis_stabilizers, stabilizer_normal_of_isGalois, mulAction_naturality, FiberFunctor.isPretransitive_of_isGalois

Theorems

NameKindAssumesProvesValidatesDepends On
card_aut_le_card_fiber_of_connected πŸ“–mathematicalβ€”Nat.card
CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”nonempty_fiber_of_isConnected
Nat.card_le_card_of_injective
Finite.of_fintype
evaluation_aut_injective_of_isConnected
card_fiber_coprod_eq_sum πŸ“–mathematicalβ€”Nat.card
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
FiberFunctor.preservesFiniteCoproducts
CategoryTheory.preservesColimit_of_createsColimit_and_hasColimit
Nat.card_sum
Nat.card_eq_of_bijective
Equiv.bijective
card_fiber_eq_of_iso πŸ“–mathematicalβ€”Nat.card
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”Nat.card_eq_of_bijective
Equiv.bijective
card_hom_le_card_fiber_of_connected πŸ“–mathematicalβ€”Nat.card
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”Nat.card_le_card_of_injective
Finite.of_fintype
nonempty_fiber_of_isConnected
evaluation_injective_of_isConnected
epi_of_nonempty_of_isConnected πŸ“–mathematicalβ€”CategoryTheory.Epiβ€”evaluation_injective_of_isConnected
CategoryTheory.Functor.map_comp
DFunLike.congr_fun
CategoryTheory.Functor.congr_map
evaluation_aut_injective_of_isConnected πŸ“–mathematicalβ€”CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
β€”evaluation_injective_of_isConnected
CategoryTheory.Aut.ext
evaluation_injective_of_isConnected πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
β€”CategoryTheory.Limits.eq_of_epi_equalizer
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasEqualizers
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
IsConnected.noTrivialComponent
CategoryTheory.Limits.equalizer.ΞΉ_mono
not_initial_of_inhabited
fiberBinaryProductEquiv_symm_fst_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
instHasBinaryProducts
CategoryTheory.Limits.pair
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Limits.prod.fst
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fiberBinaryProductEquiv
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasBinaryProducts
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesLimitPair.iso_inv_fst
CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst
fiberBinaryProductEquiv_symm_snd_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
instHasBinaryProducts
CategoryTheory.Limits.pair
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Limits.prod.snd
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fiberBinaryProductEquiv
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasBinaryProducts
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesLimitPair.iso_inv_snd
CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd
fiberEqualizerEquiv_symm_ΞΉ_apply πŸ“–mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Limits.equalizer
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
instHasEqualizers
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.equalizer.ΞΉ
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fiberEqualizerEquiv
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasEqualizers
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesEqualizer.iso_inv_ΞΉ
CategoryTheory.Limits.Types.equalizerIso_inv_comp_ΞΉ
fiberPullbackEquiv_symm_fst_apply πŸ“–mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
hasPullbacks
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fiberPullbackEquiv
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasPullbacks
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesPullback.iso_inv_fst
CategoryTheory.Limits.Types.pullbackIsoPullback_inv_fst
fiberPullbackEquiv_symm_snd_apply πŸ“–mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
hasPullbacks
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.snd
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fiberPullbackEquiv
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasPullbacks
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesPullback.iso_inv_snd
CategoryTheory.Limits.Types.pullbackIsoPullback_inv_snd
hasFiniteCoproducts πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteCoproductsβ€”β€”
hasPullbacks πŸ“–mathematicalβ€”CategoryTheory.Limits.HasPullbacksβ€”β€”
hasQuotientsByFiniteGroups πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
hasTerminal πŸ“–mathematicalβ€”CategoryTheory.Limits.HasTerminalβ€”β€”
has_non_trivial_subobject_of_not_isConnected_of_not_initial πŸ“–mathematicalIsConnectedCategoryTheory.Mono
CategoryTheory.IsIso
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
initial_iff_fiber_empty πŸ“–mathematicalβ€”CategoryTheory.Limits.IsInitial
IsEmpty
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”Equiv.nonempty_congr
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
Finite.of_fintype
FiberFunctor.preservesFiniteCoproducts
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
FiberFunctor.instReflectsColimitsOfShapeFintypeCatDiscretePEmpty
CategoryTheory.Limits.Concrete.initial_iff_empty_of_preserves_of_reflects
CategoryTheory.preservesColimit_of_createsColimit_and_hasColimit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.CreatesColimit.toReflectsColimit
instFiberFunctorGetFiberFunctor πŸ“–mathematicalβ€”FiberFunctor
CategoryTheory.GaloisCategory.toPreGaloisCategory
GaloisCategory.getFiberFunctor
β€”CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.GaloisCategory.hasFiberFunctor
instFiniteAutOfIsConnected πŸ“–mathematicalβ€”Finite
CategoryTheory.Aut
β€”nonempty_fiber_of_isConnected
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
Finite.of_injective
Finite.of_fintype
evaluation_aut_injective_of_isConnected
instFiniteHomOfIsConnected πŸ“–mathematicalβ€”Finite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”nonempty_fiber_of_isConnected
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
Finite.of_injective
Finite.of_fintype
evaluation_injective_of_isConnected
instHasBinaryProducts πŸ“–mathematicalβ€”CategoryTheory.Limits.HasBinaryProductsβ€”hasBinaryProducts_of_hasTerminal_and_pullbacks
hasTerminal
hasPullbacks
instHasColimitsOfShapeSingleObjOfFinite πŸ“–mathematicalβ€”CategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Finite.exists_type_univ_nonempty_mulEquiv
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
hasQuotientsByFiniteGroups
Finite.of_fintype
instHasEqualizers πŸ“–mathematicalβ€”CategoryTheory.Limits.HasEqualizersβ€”CategoryTheory.Limits.hasEqualizers_of_hasPullbacks_and_binary_products
instHasBinaryProducts
hasPullbacks
instHasFiniteLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteLimitsβ€”CategoryTheory.Limits.hasFiniteLimits_of_hasTerminal_and_pullbacks
hasTerminal
hasPullbacks
instMonoCoprod πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoCoprodβ€”CategoryTheory.Limits.MonoCoprod.monoCoprod_of_preservesCoprod_of_reflectsMono
CategoryTheory.Limits.MonoCoprod.instOfPreservesColimitsOfShapeDiscreteWalkingPairOfReflectsMonomorphismsForget
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.FintypeCat.instPreservesFiniteColimitsFintypeCatForgetHomCarrier
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.reflectsFiniteLimits_of_reflectsIsomorphisms
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
FintypeCat.instFullForgetHomCarrier
CategoryTheory.instFaithfulForget
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
Finite.of_fintype
FiberFunctor.preservesFiniteCoproducts
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
FiberFunctor.instReflectsMonomorphismsFintypeCat
isIso_of_mono_of_eq_card_fiber πŸ“–mathematicalNat.card
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.IsIsoβ€”CategoryTheory.ConcreteCategory.isIso_iff_bijective
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
FintypeCat.instFullForgetHomCarrier
CategoryTheory.instFaithfulForget
Fintype.bijective_iff_injective_and_card
CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
FiberFunctor.preservesPullbacks
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier
CategoryTheory.isIso_of_reflects_iso
FiberFunctor.reflectsIsos
lt_card_fiber_of_mono_of_notIso πŸ“–mathematicalCategoryTheory.IsIsoNat.card
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”isIso_of_mono_of_eq_card_fiber
Nat.card_le_card_of_injective
Finite.of_fintype
CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
FiberFunctor.preservesPullbacks
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier
monoInducesIsoOnDirectSummand πŸ“–mathematicalβ€”CategoryTheory.Limits.IsColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
β€”β€”
mulAction_def πŸ“–mathematicalβ€”CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
FintypeCat.carrier
CategoryTheory.Functor.obj
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
instMulActionAutFunctorFintypeCatCarrierObj
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
β€”β€”
mulAction_naturality πŸ“–mathematicalβ€”CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
FintypeCat.carrier
CategoryTheory.Functor.obj
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
instMulActionAutFunctorFintypeCatCarrierObj
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
β€”FunctorToFintypeCat.naturality
non_zero_card_fiber_of_not_initial πŸ“–β€”β€”β€”β€”initial_iff_fiber_empty
Finite.card_eq_zero_iff
Finite.of_fintype
nonempty_fiber_of_isConnected πŸ“–mathematicalβ€”FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”initial_iff_fiber_empty
not_nonempty_iff
IsConnected.notInitial
nonempty_fiber_pi_of_nonempty_of_finite πŸ“–mathematicalFintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
instHasFiniteLimits
CategoryTheory.Discrete.functor
β€”nonempty_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
instHasFiniteLimits
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
FiberFunctor.instPreservesFiniteLimitsFintypeCat
CategoryTheory.Limits.FintypeCat.nonempty_pi_of_nonempty
not_initial_iff_fiber_nonempty πŸ“–mathematicalβ€”FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
β€”not_isEmpty_iff
initial_iff_fiber_empty
not_initial_of_inhabited πŸ“–β€”β€”β€”β€”IsEmpty.false
initial_iff_fiber_empty
surjective_of_nonempty_fiber_of_isConnected πŸ“–mathematicalβ€”FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
β€”epi_of_nonempty_of_isConnected
surjective_on_fiber_of_epi
surjective_on_fiber_of_epi πŸ“–mathematicalβ€”FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
β€”CategoryTheory.surjective_of_epi
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.FintypeCat.inclusion_preservesFiniteColimits
FiberFunctor.preservesEpis

CategoryTheory.PreGaloisCategory.FiberFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
comp_right πŸ“–mathematicalβ€”CategoryTheory.PreGaloisCategory.FiberFunctor
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
β€”CategoryTheory.Limits.comp_preservesLimitsOfShape
preservesTerminalObjects
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
preservesPullbacks
CategoryTheory.Limits.comp_preservesFiniteCoproducts
preservesFiniteCoproducts
CategoryTheory.Limits.instPreservesFiniteCoproductsOfPreservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Functor.preservesEpimorphisms_comp
preservesEpis
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Limits.comp_preservesColimitsOfShape
instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite
CategoryTheory.reflectsIsomorphisms_comp
reflectsIsos
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
instFaithfulFintypeCat πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
FintypeCat
FintypeCat.instCategory
β€”CategoryTheory.Limits.eq_of_epi_equalizer
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.PreGaloisCategory.instHasEqualizers
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Limits.FintypeCat.instHasLimitsOfShapeFintypeCatOfFinCategory
CategoryTheory.Limits.equalizerComparison_comp_Ο€
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Limits.instIsIsoEqualizerComparison
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
instPreservesFiniteLimitsFintypeCat
CategoryTheory.Limits.equalizer.ΞΉ_of_eq
reflectsIsos
instPreservesColimitsOfShapeFintypeCatSingleObjOfFinite πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”CategoryTheory.Limits.preservesColimitsOfShape_of_equiv
preservesQuotientsByFiniteGroups
Finite.of_fintype
Finite.exists_type_univ_nonempty_mulEquiv
instPreservesFiniteLimitsFintypeCat πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteLimits
FintypeCat
FintypeCat.instCategory
β€”CategoryTheory.Limits.preservesFiniteLimits_of_preservesTerminal_and_pullbacks
CategoryTheory.PreGaloisCategory.hasTerminal
CategoryTheory.PreGaloisCategory.hasPullbacks
preservesTerminalObjects
preservesPullbacks
instReflectsColimitsOfShapeFintypeCatDiscretePEmpty πŸ“–mathematicalβ€”CategoryTheory.Limits.ReflectsColimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Limits.reflectsColimitsOfShape_of_reflectsIsomorphisms
reflectsIsos
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.PreGaloisCategory.hasFiniteCoproducts
Finite.of_fintype
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
preservesFiniteCoproducts
instReflectsLimitsOfShapeFintypeCatDiscretePEmpty πŸ“–mathematicalβ€”CategoryTheory.Limits.ReflectsLimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsIsomorphisms
reflectsIsos
CategoryTheory.PreGaloisCategory.hasTerminal
preservesTerminalObjects
instReflectsMonomorphismsFintypeCat πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsMonomorphisms
FintypeCat
FintypeCat.instCategory
β€”CategoryTheory.IsKernelPair.mono_of_isIso_fst
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.PreGaloisCategory.hasPullbacks
CategoryTheory.Limits.pullback.diagonal_isKernelPair
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Limits.has_kernel_pair_of_mono
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
preservesPullbacks
CategoryTheory.Limits.PreservesPullback.iso_hom_fst
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.isIso_fst_of_mono
reflectsIsos
preservesEpis πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesEpimorphisms
FintypeCat
FintypeCat.instCategory
β€”β€”
preservesFiniteCoproducts πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesFiniteCoproducts
FintypeCat
FintypeCat.instCategory
β€”β€”
preservesPullbacks πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
β€”β€”
preservesQuotientsByFiniteGroups πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
preservesTerminalObjects πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
β€”β€”
reflectsIsos πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
FintypeCat
FintypeCat.instCategory
β€”β€”

CategoryTheory.PreGaloisCategory.GaloisCategory

Definitions

NameCategoryTheorems
getFiberFunctor πŸ“–CompOp
1 mathmath: CategoryTheory.PreGaloisCategory.instFiberFunctorGetFiberFunctor

CategoryTheory.PreGaloisCategory.IsConnected

Theorems

NameKindAssumesProvesValidatesDepends On
noTrivialComponent πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”β€”
notInitial πŸ“–β€”β€”β€”β€”β€”

CategoryTheory.PreGaloisCategory.PreservesIsConnected

Theorems

NameKindAssumesProvesValidatesDepends On
preserves πŸ“–mathematicalβ€”CategoryTheory.PreGaloisCategory.IsConnected
CategoryTheory.Functor.obj
β€”β€”

---

← Back to Index