Documentation Verification Report

Decomposition

📁 Source: Mathlib/CategoryTheory/Galois/Decomposition.lean

Statistics

MetricCount
Definitions0
Theoremsconnected_component_unique, exists_galois_representative, exists_hom_from_galois_of_connected, exists_hom_from_galois_of_fiber, exists_hom_from_galois_of_fiber_nonempty, fiber_in_connected_component, has_decomp_connected_components, has_decomp_connected_components', natTrans_ext_of_isGalois
9
Total9

CategoryTheory.PreGaloisCategory

Theorems

NameKindAssumesProvesValidatesDepends On
connected_component_unique 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.homCategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
hasPullbacks
not_initial_of_inhabited
IsConnected.noTrivialComponent
CategoryTheory.Limits.pullback.fst_of_mono
CategoryTheory.Limits.pullback.snd_of_mono
fiberPullbackEquiv_symm_fst_apply
fiberPullbackEquiv_symm_snd_apply
CategoryTheory.Functor.map_comp
CategoryTheory.IsIso.hom_inv_id_assoc
exists_galois_representative 📖mathematicalIsGalois
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.GaloisCategory.toPreGaloisCategory
fiber_in_connected_component
isGalois_iff_pretransitive
CategoryTheory.Functor.map_comp
DFunLike.congr_fun
CategoryTheory.Iso.hom_inv_id
evaluation_injective_of_isConnected
exists_hom_from_galois_of_connected 📖mathematicalIsGaloisCategoryTheory.GaloisCategory.toPreGaloisCategory
exists_hom_from_galois_of_fiber_nonempty
nonempty_fiber_of_isConnected
exists_hom_from_galois_of_fiber 📖mathematicalIsGalois
DFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.GaloisCategory.toPreGaloisCategory
exists_galois_representative
Function.Bijective.surjective
exists_hom_from_galois_of_fiber_nonempty 📖mathematicalIsGaloisCategoryTheory.GaloisCategory.toPreGaloisCategory
exists_hom_from_galois_of_fiber
fiber_in_connected_component 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
IsConnected
CategoryTheory.Mono
CategoryTheory.GaloisCategory.toPreGaloisCategory
has_decomp_connected_components
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
FiberFunctor.preservesFiniteCoproducts
CategoryTheory.Limits.Concrete.isColimit_exists_rep
CategoryTheory.preservesColimit_of_createsColimit_and_hasColimit
CategoryTheory.instFiniteDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instMonoCoprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
Subtype.finite
has_decomp_connected_components 📖mathematicalIsConnected
Finite
instFiberFunctorGetFiberFunctor
has_decomp_connected_components' 📖mathematicalIsConnectedCategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.GaloisCategory.toPreGaloisCategory
has_decomp_connected_components
natTrans_ext_of_isGalois 📖CategoryTheory.NatTrans.app
FintypeCat
FintypeCat.instCategory
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.NatTrans.ext'
FintypeCat.hom_ext
exists_hom_from_galois_of_fiber
FunctorToFintypeCat.naturality

---

← Back to Index