Documentation Verification Report

EssSurj

📁 Source: Mathlib/CategoryTheory/Galois/EssSurj.lean

Statistics

MetricCount
DefinitionsEssSurj, fiberIsoQuotientStabilizer
2
Theoremsexists_lift_of_continuous, exists_lift_of_quotient_openSubgroup, has_decomp_quotients
3
Total5

CategoryTheory.Functor

Definitions

NameCategoryTheorems
EssSurj 📖CompData
65 mathmath: essSurj_of_comp_fully_faithful, SimplexCategory.SkeletalFunctor.instEssSurjNonemptyFinLinOrdSkeletalFunctor, CategoryTheory.Localization.essSurj, essSurj_of_surj, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, ModuleCat.forget₂_addCommGrp_essSurj, CategoryTheory.Comma.instEssSurjCompPostOfFull, CategoryTheory.StructuredArrow.instEssSurjCompPre, CategoryTheory.StructuredArrow.instEssSurjObjCompPostOfFull, CategoryTheory.RelCat.graphFunctor_essSurj, compactumToCompHaus.essSurj, instEssSurjOppositeOp, CategoryTheory.Localization.essSurj_mapComposableArrows_of_hasRightCalculusOfFractions, CategoryTheory.CostructuredArrow.essSurj_map₂, CategoryTheory.CostructuredArrow.instEssSurjCompPre, CategoryTheory.Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, CategoryTheory.CostructuredArrow.instEssSurjOverToOver, HomotopyCategory.instEssSurjHomologicalComplexQuotient, CategoryTheory.Under.instEssSurjObjPostOfFull, CategoryTheory.instEssSurjCoalgebraToComonadAdjComparison, CategoryTheory.Equivalence.essSurj_functor, CategoryTheory.Idempotents.instEssSurjKaroubiToKaroubiOfIsIdempotentComplete, instEssSurjId, CategoryTheory.instEssSurjAlgebraToMonadAdjComparison, CategoryTheory.instEssSurjSkeletonFromSkeleton, CategoryTheory.instEssSurjDecomposedDecomposedTo, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, IsEquivalence.essSurj, FintypeCat.Skeleton.instEssSurjIncl, CategoryTheory.CostructuredArrow.instEssSurjCompObjPostOfFull, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, AlgebraicGeometry.AffineScheme.Spec_essSurj, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, CategoryTheory.LocalizerMorphism.essSurj_of_hasRightResolutions, CategoryTheory.Comma.instEssSurjCompPreLeft, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Quotient.essSurj_functor, EssSurj.ofUnivLE, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, instEssSurjOppositeRightOp, CategoryTheory.Localization.essSurj_mapArrow_of_hasRightCalculusOfFractions, CategoryTheory.Over.instEssSurjObjPostOfFull, CategoryTheory.Localization.essSurj_mapArrow, CategoryTheory.Comma.essSurj_map, instEssSurjSkeletonMapSkeleton, essSurj_of_iso, CategoryTheory.Comma.instEssSurjCompPreRight, EssSurj.toEssImage, DerivedCategory.instEssSurjCochainComplexIntQ, instEssSurjLightDiagram'LightDiagramToLightFunctor, CategoryTheory.StructuredArrow.essSurj_map₂, CategoryTheory.Reflective.comparison_essSurj, CategoryTheory.StructuredArrow.instEssSurjUnderToUnder, instEssSurjOppositeLeftOp, UnivLE_iff_essSurj, essSurj_comp, CategoryTheory.Join.instEssSurjSumFromSum, CategoryTheory.Localization.Monoidal.instEssSurjLocalizedMonoidalToMonoidalCategory, CategoryTheory.Localization.essSurj_mapComposableArrows, CategoryTheory.ObjectProperty.essSurj_ιOfLE_iff, CategoryTheory.LocalizerMorphism.essSurj_of_hasLeftResolutions, CategoryTheory.Equivalence.essSurjInducedFunctor, CategoryTheory.Coreflective.comparison_essSurj, CategoryTheory.Equivalence.essSurj_inverse

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
fiberIsoQuotientStabilizer 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lift_of_continuous 📖mathematical—CategoryTheory.Iso
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
CategoryTheory.Functor.obj
functorToAction
—CategoryTheory.GaloisCategory.toPreGaloisCategory
instIsTopologicalGroupAutFunctorFintypeCat
instCompactSpaceAutFunctorFintypeCat
MulAction.left_quotientAction
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
Action.instHasFiniteCoproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
has_decomp_quotients
hasFiniteCoproducts
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction
exists_lift_of_quotient_openSubgroup
exists_lift_of_quotient_openSubgroup 📖mathematical—CategoryTheory.Iso
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
CategoryTheory.Functor.obj
functorToAction
Action.FintypeCat.ofMulAction
FintypeCat.of
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
OpenSubgroup.toSubgroup
instTopologicalSpaceAutFunctorFintypeCat
instIsTopologicalGroupAutFunctorFintypeCat
instCompactSpaceAutFunctorFintypeCat
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
—CategoryTheory.GaloisCategory.toPreGaloisCategory
instIsTopologicalGroupAutFunctorFintypeCat
instCompactSpaceAutFunctorFintypeCat
MulAction.left_quotientAction
exists_set_ker_evaluation_subset_of_isOpen
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
OpenSubgroup.instSubgroupClass
OpenSubgroup.isOpen'
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
instHasFiniteLimits
Finite.of_fintype
nonempty_fiber_pi_of_nonempty_of_finite
nonempty_fiber_of_isConnected
exists_hom_from_galois_of_fiber_nonempty
IsGalois.toIsConnected
stabilizer_isOpen
continuousSMul_aut_fiber
obj_discreteTopology
stabilizer_normal_of_isGalois
FintypeCat.hom_ext
QuotientGroup.leftRel_apply
mul_inv_rev
Subgroup.Normal.conj_mem
Subgroup.inv_mem
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
Action.instIsIsoHomHom
Action.Hom.comm
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
surjective_of_nonempty_fiber_of_isConnected
FunctorToFintypeCat.naturality
Subgroup.quotient_finite_of_isOpen'
OpenSubgroup.isOpen
Subgroup.subgroupOf_isOpen
Subgroup.normal_subgroupOf
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeSingleObjOfFinite
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite
has_decomp_quotients 📖mathematical—CategoryTheory.Iso
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.Limits.sigmaObj
Action.FintypeCat.ofMulAction
FintypeCat.of
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
OpenSubgroup.toSubgroup
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
Action.instHasFiniteCoproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
CategoryTheory.Discrete.functor
—CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat
MulAction.left_quotientAction
Action.instHasFiniteCoproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
has_decomp_connected_components'
DFunLike.congr_fun
Action.Hom.comm
CategoryTheory.ConcreteCategory.mono_iff_injective_of_preservesPullback
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV
CategoryTheory.mono_comp
CategoryTheory.Limits.MonoCoprod.mono_ι
instMonoCoprod
Subtype.finite
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
le_bot_iff
isOpen_discrete
Set.preimage_image_eq
continuous_induced_rng
Continuous.comp
ContinuousSMul.continuous_smul
Continuous.prodMk
Continuous.fst
continuous_id'
Continuous.comp'
continuous_of_discreteTopology
Continuous.snd
nonempty_fiber_of_isConnected
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV
stabilizer_isOpen

---

← Back to Index