Documentation Verification Report

Examples

📁 Source: Mathlib/CategoryTheory/Galois/Examples.lean

Statistics

MetricCount
DefinitionsimageComplement, imageComplementIncl, imageComplement, imageComplementIncl, isoQuotientStabilizerOfIsConnected
5
TheoremsisConnected_iff_transitive, isConnected_of_transitive, pretransitive_of_isConnected, instFiberFunctorActionFintypeCatForget, instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, instGaloisCategoryActionFintypeCat, instHasColimitsOfShapeSingleObjFintypeCatOfFinite, instMonoActionFintypeCatImageComplementIncl, instPreGaloisCategoryActionFintypeCat, instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV
10
Total15

CategoryTheory.FintypeCat

Definitions

NameCategoryTheorems
imageComplement 📖CompOp—
imageComplementIncl 📖CompOp—
isoQuotientStabilizerOfIsConnected 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
instFiberFunctorActionFintypeCatForget 📖mathematical—CategoryTheory.PreGaloisCategory.FiberFunctor
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
instPreGaloisCategoryActionFintypeCat
Action.forget
—instPreGaloisCategoryActionFintypeCat
Action.instPreservesLimitsOfShapeForgetOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
Finite.of_fintype
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Action.instPreservesColimitsOfShapeForgetOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
instHasColimitsOfShapeSingleObjFintypeCatOfFinite
Action.isIso_of_hom_isIso
instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV 📖mathematical—CategoryTheory.PreGaloisCategory.FiberFunctor
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
instPreGaloisCategoryActionFintypeCat
CategoryTheory.forget₂
Action.HomSubtype
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
FintypeCat.concreteCategoryFintype
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
—instPreGaloisCategoryActionFintypeCat
instFiberFunctorActionFintypeCatForget
instGaloisCategoryActionFintypeCat 📖mathematical—CategoryTheory.GaloisCategory
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
—instPreGaloisCategoryActionFintypeCat
instFiberFunctorActionFintypeCatForget
instHasColimitsOfShapeSingleObjFintypeCatOfFinite 📖mathematical—CategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FintypeCat
FintypeCat.instCategory
—Finite.exists_type_univ_nonempty_mulEquiv
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.Limits.FintypeCat.instHasColimitsOfShapeFintypeCatOfFinCategory
instMonoActionFintypeCatImageComplementIncl 📖mathematical—CategoryTheory.Mono
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.imageComplement
Action.imageComplementIncl
—CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.instFaithfulForget
CategoryTheory.ConcreteCategory.mono_of_injective
Subtype.val_injective
instPreGaloisCategoryActionFintypeCat 📖mathematical—CategoryTheory.PreGaloisCategory
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
—CategoryTheory.Limits.hasLimitsOfShape_discrete
Action.instHasFiniteProducts
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
Finite.of_fintype
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Action.instHasFiniteLimits
Action.instHasFiniteCoproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
Action.hasColimitsOfShape
instHasColimitsOfShapeSingleObjFintypeCatOfFinite
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV
CategoryTheory.Limits.comp_reflectsColimit
Action.instReflectsColimitForget
CategoryTheory.CreatesColimit.toReflectsColimit
instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV 📖mathematical—CategoryTheory.Limits.PreservesFiniteLimits
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.types
CategoryTheory.forget
Action.HomSubtype
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
FintypeCat.concreteCategoryFintype
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
—CategoryTheory.Limits.comp_preservesFiniteLimits
Action.instPreservesFiniteLimitsForgetOfHasFiniteLimits
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
CategoryTheory.Limits.FintypeCat.inclusion_preservesFiniteLimits

CategoryTheory.FintypeCat.Action

Definitions

NameCategoryTheorems
imageComplement 📖CompOp
1 mathmath: CategoryTheory.FintypeCat.instMonoActionFintypeCatImageComplementIncl
imageComplementIncl 📖CompOp
1 mathmath: CategoryTheory.FintypeCat.instMonoActionFintypeCatImageComplementIncl

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_iff_transitive 📖mathematical—CategoryTheory.PreGaloisCategory.IsConnected
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
MulAction.IsPretransitive
FintypeCat.carrier
Action.V
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Action.instMulActionCarrierVFintypeCat
—pretransitive_of_isConnected
isConnected_of_transitive
isConnected_of_transitive 📖mathematical—CategoryTheory.PreGaloisCategory.IsConnected
Action
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.FintypeCat.ofMulAction
—CategoryTheory.PreGaloisCategory.not_initial_of_inhabited
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget
CategoryTheory.PreGaloisCategory.not_initial_iff_fiber_nonempty
CategoryTheory.ConcreteCategory.isIso_iff_bijective
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
FintypeCat.instFullForgetHomCarrier
CategoryTheory.instFaithfulForget
CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback
CategoryTheory.Functor.map_mono
CategoryTheory.ConcreteCategory.forget₂_preservesMonomorphisms
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV
CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier
MulAction.exists_smul_eq
Action.Hom.comm
FintypeCat.comp_apply
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Functor.map_isIso
Action.isIso_of_hom_isIso
CategoryTheory.PreGaloisCategory.FiberFunctor.reflectsIsos
pretransitive_of_isConnected 📖mathematical—MulAction.IsPretransitive
FintypeCat.carrier
Action.V
FintypeCat
FintypeCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Action.instMulActionCarrierVFintypeCat
—Subtype.finite
Finite.of_fintype
CategoryTheory.ConcreteCategory.mono_of_injective
Subtype.val_injective
CategoryTheory.PreGaloisCategory.IsConnected.noTrivialComponent
CategoryTheory.PreGaloisCategory.not_initial_iff_fiber_nonempty
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget
Set.Nonempty.coe_sort
MulAction.nonempty_orbit
CategoryTheory.ConcreteCategory.isIso_iff_bijective
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
FintypeCat.instFullForgetHomCarrier
CategoryTheory.instFaithfulForget
CategoryTheory.Functor.map_isIso
Function.Bijective.surjective

---

← Back to Index