Documentation Verification Report

Full

📁 Source: Mathlib/CategoryTheory/Galois/Full.lean

Statistics

MetricCount
DefinitionsFull
1
Theoremsexists_lift_of_mono, exists_lift_of_mono_of_isConnected, functorToAction_full
3
Total4

CategoryTheory.Functor

Definitions

NameCategoryTheorems
Full 📖CompData
217 mathmath: ModuleCat.instFullUliftFunctor, CategoryTheory.StructuredArrow.instFullUnderToUnder, CommMonCat.instFullMonCatForget₂MonoidHomCarrierCarrier, CategoryTheory.ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda, CategoryTheory.CommGrp.instFullCommMonForget₂CommMon, CommRingCat.instFullRingCatForget₂RingHomCarrierCarrier, CategoryTheory.Grpd.forgetToCat_full, CategoryTheory.nerve.instFullCatTruncatedOfNatNatNerveFunctor₂, CommMonCat.forget₂_full, SSet.Truncated.sk.full, CategoryTheory.instFullMonFunctorOppositeMonCatYonedaMon, instFullFintypeCatProfiniteToProfinite, full_whiskeringRight_obj, SheafOfModules.instFullPresheafOfModulesValRingCatForget, CategoryTheory.IsFiltered.SmallFilteredIntermediate.instFullInclusion, CategoryTheory.instFullSheafSheafComposeOfFaithful, CategoryTheory.instFullCatTypeToCat, CondensedMod.LocallyConstant.instFullModuleCatFunctor, CategoryTheory.ObjectProperty.full_ÎčOfLE, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, CategoryTheory.SimplicialObject.Truncated.cosk.full, IsEquivalence.full, CategoryTheory.Equivalence.full_functor, CategoryTheory.Abelian.freyd_mitchell, CategoryTheory.MorphismProperty.Comma.instFullChangeProp, instFullOppositeTypeRestrictedULiftYonedaOfIsDense, CategoryTheory.GrothendieckTopology.instFullSheafTypeYoneda, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, compactumToCompHaus.full, CategoryTheory.Quotient.full_functor, HomotopyCategory.instFullHomologicalComplexQuotient, CategoryTheory.CostructuredArrow.instFullOverToOver, ModuleCat.forget₂_addCommGroup_full, CategoryTheory.Coreflective.comparison_full, CategoryTheory.Adjunction.full_R_of_isSplitMono_counit_app, instFullCompHausCondensedTypeCompHausToCondensed', CategoryTheory.Coyoneda.ULiftCoyoneda.instFullOppositeFunctorTypeUliftCoyoneda, ComplexShape.Embedding.instFullHomotopyCategoryExtendHomotopyFunctor, CategoryTheory.ObjectProperty.full_Îč, IsOpenMap.functorFullOfMono, AlgebraicGeometry.instFullOppositeCommRingCatLocallyRingedSpaceToLocallyRingedSpace, CategoryTheory.Localization.instFullFunctorWhiskeringLeftFunctor', CompHausLike.instFullTopCatCompHausLikeToTop, CategoryTheory.instFullAlgebraToMonadAdjComparison, Full.mapCommGrp, instFullProdCurry₃, instFullFunctor, CategoryTheory.MorphismProperty.Comma.instFullTopCommaForget, CategoryTheory.Types.instFullForgetTypeHom, CategoryTheory.Cat.FreeRefl.instFullPathsQuotientFunctor, AlgebraicGeometry.instFullModuleCatCarrierModulesSpecOfFunctor, CategoryTheory.instFullDecomposedDecomposedTo, Full.id, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.StructuredArrow.full_map₂, CategoryTheory.instFullIndYoneda, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CategoryTheory.ObjectProperty.instFullFullSubcategoryLift, CommGrpCat.instFullGrpCatForget₂MonoidHomCarrierCarrier, instFullCompHausCondensedSetCompHausToCondensed, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, AlgebraicGeometry.Scheme.Modules.instFullPushforward, CategoryTheory.GrothendieckTopology.instFullSheafTypeUliftYoneda, AddCommMonCat.forget₂_full, CategoryTheory.Idempotents.instFullKaroubiToKaroubi, CategoryTheory.WithInitial.instFullIncl, AlgebraicGeometry.Spec.full, SSet.Truncated.HomotopyCategory.instFullFreeReflOneTruncation₂QuotientFunctor, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, CategoryTheory.uliftFunctor_full, AddCommMonCat.instFullMonCatForget₂AddMonoidHomCarrierCarrier, HomotopicalAlgebra.FibrantObject.instFullHoCatToHoCat, CategoryTheory.Abelian.full_comp_preadditiveCoyonedaObj, AugmentedSimplexCategory.instFullSimplexCategoryInclusion, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.full_embedding, CategoryTheory.instFullSubterminalsSubterminalInclusion, CommGrpCat.instFullUliftFunctor, CategoryTheory.Comma.instFullCompPreLeft, HomotopicalAlgebra.CofibrantObject.instFullHoCatToHoCat, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, Semigrp.forget₂_full, CategoryTheory.Localization.full_whiskeringLeft, CategoryTheory.SimplicialObject.Truncated.sk.full, CategoryTheory.CostructuredArrow.instFullCompPre, CategoryTheory.full_linearCoyoneda, DerivedCategory.instFullSingleFunctor, AlgebraicGeometry.AffineScheme.forgetToScheme_full, CategoryTheory.Idempotents.instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding, rightOp_full, FullyFaithful.full, CategoryTheory.MorphismProperty.instFullUnderTopUnderForget, CategoryTheory.Limits.Bicones.functoriality_full, AlgebraicGeometry.Scheme.instFullOppositeIdealSheafDataOverSubschemeFunctor, CategoryTheory.CostructuredArrow.full_map₂, instFullActionMapActionOfFaithful, CategoryTheory.IsCofiltered.SmallCofilteredIntermediate.instFullInclusion, CategoryTheory.full_preadditiveCoyoneda, instFullLightDiagram'LightDiagramToLightFunctor, instFullPreordCatPreordToCat, leftOp_full, Full.mapCommMon, ComplexShape.Embedding.instFullHomologicalComplexExtendFunctor, CategoryTheory.Adjunction.full_L_of_isSplitEpi_unit_app, CategoryTheory.Limits.Cones.functoriality_full, instFullProdUncurry, CategoryTheory.Sigma.instFullSigmaIncl, AddCommGrpCat.instFullAddGrpCatForget₂AddMonoidHomCarrierCarrier, LightCondSet.LocallyConstant.instFullLightCondensedTypeDiscrete, CategoryTheory.Yoneda.yoneda_full, AddSemigrp.forget₂_full, Full.mapMon, CategoryTheory.Comma.full_map, CategoryTheory.instFullGrpFunctorOppositeGrpCatYonedaGrp, FintypeCat.instFullIncl, CategoryTheory.Join.inclRightFull, CategoryTheory.instFullSkeletonFromSkeleton, DeltaGenerated.instFullTopCatDeltaGeneratedToTop, CategoryTheory.Comma.instFullCompPreRight, CategoryTheory.Comma.instFullCompPostOfFaithful, MonCat.toCat_full, CategoryTheory.nerveFunctor.full, FintypeCat.Skeleton.instFullIncl, instFullProdUncurry₃, CategoryTheory.full_preadditiveYoneda, CategoryTheory.Limits.Cocones.functoriality_full, GrpCat.instFullMonCatForget₂MonoidHomCarrierCarrier, CategoryTheory.Reflective.comparison_full, RingCat.instFullSemiRingCatForget₂RingHomCarrierCarrier, CategoryTheory.MorphismProperty.instFullOverTopOverForget, Full.mapGrp, CategoryTheory.Pseudofunctor.DescentData.full_pullFunctor, FGModuleCat.instFullUlift, AlexDisc.forgetToTop_full, CategoryTheory.instFullFunctorConstOfIsConnected, instFullSkeletonMapSkeleton, Action.full_res, instFullFGAlgCatUliftFunctor, instFullProdCurry, LightCondMod.LocallyConstant.instFullModuleCatFunctor, CochainComplex.instFullIntSingleFunctor, TopCat.Sheaf.forget_full, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, CategoryTheory.Quotient.full_whiskeringLeft_functor, AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace_full, CategoryTheory.Coyoneda.coyoneda_full, CategoryTheory.full_linearYoneda, instFullOppositeOp, CategoryTheory.Under.instFullObjPostOfFaithful, CategoryTheory.CommMon.instFullMonForget₂Mon, CategoryTheory.CostructuredArrow.instFullCompObjPostOfFaithful, LightCondSet.LocallyConstant.instFullFunctor, CategoryTheory.WithTerminal.instFullIncl, instFullLightProfiniteLightCondSetLightProfiniteToLightCondSet, Full.of_comp_faithful_iso, AlgebraicGeometry.Scheme.Modules.instFullPresheafOfModulesToPresheafOfModules, SSet.Truncated.cosk.full, instFullLightDiagramProfiniteLightDiagramToProfinite, CategoryTheory.Over.instFullObjPostOfFaithful, CategoryTheory.Limits.FormalCoproduct.instFullIncl, HomotopicalAlgebra.CofibrantObject.instFullHoCatHoCatÎčCofibrantObject, Full.of_iso, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.Abelian.FreydMitchell.instFullModuleCatEmbeddingRingFunctor, CategoryTheory.Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, AlgebraicGeometry.Scheme.instFullEtaleOverForget, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, CategoryTheory.MorphismProperty.instFullCostructuredArrowTopOverToOver, CompHausLike.instFullToCompHausLike, AddCommGrpCat.instFullUliftFunctor, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, TopCat.instFullUliftFunctor, FinBoolAlg.forgetToBoolAlg_full, LightCondMod.LocallyConstant.instFullModuleCatLightCondensedDiscrete, CategoryTheory.MonoOver.full_map, CategoryTheory.instFullSheafFunctorOppositeCompSheafComposeSheafToPresheafOfFaithful, CategoryTheory.instFullFunctorOppositeTypeShrinkYoneda, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, instFullTriangleMapTriangleOfFaithful, CategoryTheory.Mat_.Embedding.instFullEmbedding, CategoryTheory.Limits.BinaryBicones.functoriality_full, AlgebraicGeometry.Scheme.instFullLocallyRingedSpaceForgetToLocallyRingedSpace, AddGrpCat.instFullUliftFunctor, PresheafOfModules.instFullRestrictScalarsIdFunctorOppositeRingCat, CategoryTheory.StructuredArrow.instFullCompPre, CategoryTheory.Equivalence.full_inverse, AddGrpCat.instFullMonCatForget₂AddMonoidHomCarrierCarrier, CondensedSet.LocallyConstant.instFullFunctor, Full.of_comp_faithful, CompactlyGenerated.instFullTopCatCompactlyGeneratedToTop, CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf, Full.comp, CategoryTheory.instFullCoalgebraToComonadAdjComparison, HomologicalComplex.instFullSingle, CommAlgCat.instFullUliftFunctor, CategoryTheory.StructuredArrow.instFullObjCompPostOfFaithful, IsDenseSubsite.full_sheafPushforwardContinuous, Full.toEssImage, AlgebraicGeometry.AffineScheme.Spec_full, HomotopicalAlgebra.BifibrantObject.instFullHoCatToHoCat, instFullFintypeCatLightProfiniteToLightProfinite, CategoryTheory.Join.inclLeftFull, SimplexCategory.SkeletalFunctor.instFullNonemptyFinLinOrdSkeletalFunctor, CommSemiRingCat.instFullSemiRingCatForget₂RingHomCarrierCarrier, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Sequential.instFullTopCatSequentialToTop, CategoryTheory.PreGaloisCategory.functorToAction_full, CategoryTheory.Coreflective.toFull, FintypeCat.instFullForgetHomCarrier, CategoryTheory.Grp.instFullMonForget₂Mon, CategoryTheory.instFullIndFunctorOppositeTypeInclusion, instFullCondensedTypeCondensedSetUlift, CategoryTheory.Reflective.toFull, GrpCat.instFullUliftFunctor, IsCoverDense.full_sheafPushforwardContinuous, instFullWitness, CategoryTheory.InducedCategory.full, CategoryTheory.CommGrp.instFullGrpForget₂Grp

CategoryTheory.PreGaloisCategory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lift_of_mono 📖mathematical—CategoryTheory.Mono
CategoryTheory.CategoryStruct.comp
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.Category.toCategoryStruct
Action.instCategory
CategoryTheory.Functor.obj
functorToAction
CategoryTheory.Iso.hom
CategoryTheory.Functor.map
—CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
hasFiniteCoproducts
CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat
has_decomp_connected_components'
Action.instHasFiniteCoproducts
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.FintypeCat.hasFiniteColimits
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.instPreservesColimitsOfShapeDiscreteOfFiniteOfPreservesFiniteCoproducts
instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.sigmaComparison_map_desc
CategoryTheory.Limits.colimit.Îč_desc
CategoryTheory.Limits.Îč_colimMap_assoc
CategoryTheory.Functor.mono_of_mono_map
instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.hom_inv_id_assoc
exists_lift_of_mono_of_isConnected
CategoryTheory.Limits.MonoCoprod.mono_Îč
instMonoCoprod
Subtype.finite
CategoryTheory.Iso.isIso_hom
exists_lift_of_mono_of_isConnected 📖mathematical—IsConnected
CategoryTheory.Mono
CategoryTheory.CategoryStruct.comp
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.Category.toCategoryStruct
Action.instCategory
CategoryTheory.Functor.obj
functorToAction
CategoryTheory.Iso.hom
CategoryTheory.Functor.map
—CategoryTheory.GaloisCategory.toPreGaloisCategory
nonempty_fiber_of_isConnected
CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat
CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV
fiber_in_connected_component
PreservesIsConnected.preserves
instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction
connected_component_unique
CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat
CategoryTheory.Functor.map_mono
instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction
evaluation_injective_of_isConnected
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
functorToAction_full 📖mathematical—CategoryTheory.Functor.Full
Action
FintypeCat
FintypeCat.instCategory
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
Action.instCategory
functorToAction
—CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Limits.instHasBinaryProductObjOfPreservesLimitDiscreteWalkingPairPair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instHasBinaryProducts
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
Finite.of_fintype
instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction
CategoryTheory.instMonoId
CategoryTheory.Limits.prod.lift_fst
CategoryTheory.mono_of_mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
exists_lift_of_mono
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.IsIso.id
CategoryTheory.Limits.PreservesLimitPair.iso_inv_fst
CategoryTheory.Limits.limit.lift_π
CategoryTheory.IsIso.comp_isIso
CategoryTheory.isIso_of_reflects_iso
instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
Action.hom_ext
FintypeCat.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.inv.congr_simp
CategoryTheory.IsIso.Iso.inv_inv
CategoryTheory.Limits.PreservesLimitPair.iso_inv_snd
CategoryTheory.Iso.hom_inv_id_assoc

---

← Back to Index