Documentation Verification Report

GaloisObjects

📁 Source: Mathlib/CategoryTheory/Galois/GaloisObjects.lean

Statistics

MetricCount
DefinitionsIsGalois, autMap, autMapHom, autMulFiber, evaluationEquivOfIsGalois, isTerminalQuotientOfIsGalois, quotientByAutTerminalEquivUniqueQuotient
7
TheoremsquotientByAutTerminal, toIsConnected, autMapHom_apply, autMap_apply_mul, autMap_comp, autMap_id, autMap_surjective_of_isGalois, autMap_unique, comp_autMap, comp_autMap_apply, evaluationEquivOfIsGalois_apply, evaluationEquivOfIsGalois_symm_fiber, evaluation_aut_bijective_of_isGalois, evaluation_aut_surjective_of_isGalois, exists_autMap, instPreservesColimitsOfShapeFintypeCatSingleObjInclOfFinite, isGalois_iff_aux, isGalois_iff_pretransitive, isPretransitive_of_isGalois, stabilizer_normal_of_isGalois
20
Total27

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
IsGalois 📖CompData
8 mathmath: isGalois_iff_aux, PointedGaloisObject.isGalois, autMulEquivAutGalois_symm_app, exists_hom_from_galois_of_connected, exists_hom_from_galois_of_fiber_nonempty, exists_hom_from_galois_of_fiber, isGalois_iff_pretransitive, exists_galois_representative
autMap 📖CompOp
8 mathmath: autMap_comp, autMapHom_apply, comp_autMap, autMap_surjective_of_isGalois, autMap_apply_mul, autMap_unique, comp_autMap_apply, autMap_id
autMapHom 📖CompOp
2 mathmath: autMapHom_apply, autGaloisSystem_map
autMulFiber 📖CompOp
2 mathmath: isGalois_iff_pretransitive, isPretransitive_of_isGalois
evaluationEquivOfIsGalois 📖CompOp
3 mathmath: autIsoFibers_inv_app, evaluationEquivOfIsGalois_apply, evaluationEquivOfIsGalois_symm_fiber
isTerminalQuotientOfIsGalois 📖CompOp
quotientByAutTerminalEquivUniqueQuotient 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
autMapHom_apply 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
autMapHom
autMap
autMap_apply_mul 📖mathematicalautMap
CategoryTheory.Aut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
nonempty_fiber_of_isConnected
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
evaluation_aut_injective_of_isConnected
IsGalois.toIsConnected
comp_autMap_apply
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
autMap_comp 📖mathematicalautMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Aut
IsGalois.toIsConnected
IsGalois.toIsConnected
autMap_unique
CategoryTheory.Category.assoc
comp_autMap
autMap_id 📖mathematicalautMap
IsGalois.toIsConnected
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Aut
IsGalois.toIsConnected
autMap_unique
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
autMap_surjective_of_isGalois 📖mathematicalCategoryTheory.Aut
autMap
IsGalois.toIsConnected
IsGalois.toIsConnected
nonempty_fiber_of_isConnected
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
surjective_of_nonempty_fiber_of_isConnected
MulAction.exists_smul_eq
isPretransitive_of_isGalois
evaluation_aut_injective_of_isConnected
comp_autMap_apply
autMap_unique 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
autMapexists_autMap
comp_autMap 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
autMap
exists_autMap
comp_autMap_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
autMap
CategoryTheory.Functor.map_comp
DFunLike.congr_fun
CategoryTheory.Functor.congr_map
comp_autMap
evaluationEquivOfIsGalois_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
EquivLike.toFunLike
Equiv.instEquivLike
evaluationEquivOfIsGalois
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.GaloisCategory.toPreGaloisCategory
evaluationEquivOfIsGalois_symm_fiber 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Equiv
CategoryTheory.Aut
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
evaluationEquivOfIsGalois
CategoryTheory.GaloisCategory.toPreGaloisCategory
Equiv.apply_symm_apply
evaluation_aut_bijective_of_isGalois 📖mathematicalFunction.Bijective
CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.GaloisCategory.toPreGaloisCategory
evaluation_aut_injective_of_isConnected
IsGalois.toIsConnected
evaluation_aut_surjective_of_isGalois
evaluation_aut_surjective_of_isGalois 📖mathematicalCategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.IsPretransitive.exists_smul_eq
isPretransitive_of_isGalois
exists_autMap 📖mathematicalExistsUnique
CategoryTheory.Aut
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
nonempty_fiber_of_isConnected
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiberFunctorGetFiberFunctor
evaluation_injective_of_isConnected
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
evaluationEquivOfIsGalois_symm_fiber
evaluation_aut_injective_of_isConnected
IsGalois.toIsConnected
DFunLike.congr_fun
CategoryTheory.Functor.congr_map
instPreservesColimitsOfShapeFintypeCatSingleObjInclOfFinite 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
FintypeCat
FintypeCat.instCategory
CategoryTheory.types
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
FintypeCat.incl
CategoryTheory.Limits.preservesColimitsOfShape_of_equiv
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.FintypeCat.inclusion_preservesFiniteColimits
Finite.exists_type_univ_nonempty_mulEquiv
isGalois_iff_aux 📖mathematicalIsGalois
CategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.colimit
CategoryTheory.SingleObj
CategoryTheory.Aut
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.SingleObj.functor
CategoryTheory.Aut.toEnd
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeSingleObjOfFinite
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiniteAutOfIsConnected
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeSingleObjOfFinite
CategoryTheory.GaloisCategory.toPreGaloisCategory
instFiniteAutOfIsConnected
IsGalois.quotientByAutTerminal
isGalois_iff_pretransitive 📖mathematicalIsGalois
MulAction.IsPretransitive
CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
autMulFiber
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeSingleObjOfFinite
instFiniteAutOfIsConnected
isGalois_iff_aux
Equiv.nonempty_congr
MulAction.pretransitive_iff_unique_quotient_of_nonempty
nonempty_fiber_of_isConnected
isPretransitive_of_isGalois 📖mathematicalMulAction.IsPretransitive
CategoryTheory.Aut
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
autMulFiber
CategoryTheory.GaloisCategory.toPreGaloisCategory
isGalois_iff_pretransitive
IsGalois.toIsConnected
stabilizer_normal_of_isGalois 📖mathematicalSubgroup.Normal
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
CategoryTheory.Aut.instGroup
MulAction.stabilizer
FintypeCat.carrier
CategoryTheory.Functor.obj
instMulActionAutFunctorFintypeCatCarrierObj
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.mem_stabilizer_iff
MulAction.IsPretransitive.exists_smul_eq
isPretransitive_of_isGalois
mulAction_naturality
smul_inv_smul

CategoryTheory.PreGaloisCategory.IsGalois

Theorems

NameKindAssumesProvesValidatesDepends On
quotientByAutTerminal 📖mathematicalCategoryTheory.Limits.IsTerminal
CategoryTheory.Limits.colimit
CategoryTheory.SingleObj
CategoryTheory.Aut
CategoryTheory.SingleObj.category
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
CategoryTheory.SingleObj.functor
CategoryTheory.Aut.toEnd
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.PreGaloisCategory.instHasColimitsOfShapeSingleObjOfFinite
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.PreGaloisCategory.instFiniteAutOfIsConnected
toIsConnected
toIsConnected 📖mathematicalCategoryTheory.PreGaloisCategory.IsConnected

---

← Back to Index