Documentation Verification Report

IsFundamentalgroup

📁 Source: Mathlib/CategoryTheory/Galois/IsFundamentalgroup.lean

Statistics

MetricCount
DefinitionsIsFundamentalGroup, IsNaturalSMul, toAut, toAutHomeo, toAutMulEquiv
5
Theoremscontinuous_smul, non_trivial, non_trivial', toIsNaturalSMul, transitive_of_isGalois, naturality, action_ext_of_isGalois, instIsFundamentalGroupAutFunctorFintypeCat, instIsPretransitiveCarrierObjFintypeCatOfIsConnected, isPretransitive_of_surjective, toAutHomeo_apply, toAutMulEquiv_apply, toAutMulEquiv_isHomeomorph, toAut_bijective, toAut_continuous, toAut_hom_app_apply, toAut_injective_of_non_trivial, toAut_isHomeomorph, toAut_surjective_isGalois, toAut_surjective_isGalois_finite_family, toAut_surjective_of_isPretransitive
21
Total26

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
IsFundamentalGroup 📖CompData
1 mathmath: instIsFundamentalGroupAutFunctorFintypeCat
IsNaturalSMul 📖CompData
1 mathmath: IsFundamentalGroup.toIsNaturalSMul
toAut 📖CompOp
8 mathmath: toAut_hom_app_apply, toAutHomeo_apply, toAutMulEquiv_apply, toAut_isHomeomorph, toAut_surjective_of_isPretransitive, toAut_bijective, toAut_injective_of_non_trivial, toAut_continuous
toAutHomeo 📖CompOp
1 mathmath: toAutHomeo_apply
toAutMulEquiv 📖CompOp
2 mathmath: toAutMulEquiv_isHomeomorph, toAutMulEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
action_ext_of_isGalois 📖FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.exists_smul_eq
isPretransitive_of_isGalois
CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
FiberFunctor.preservesPullbacks
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier
IsNaturalSMul.naturality
FunctorToFintypeCat.naturality
instIsFundamentalGroupAutFunctorFintypeCat 📖mathematicalIsFundamentalGroup
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
CategoryTheory.Aut.instGroup
instMulActionAutFunctorFintypeCatCarrierObj
instTopologicalSpaceAutFunctorFintypeCat
instIsTopologicalGroupAutFunctorFintypeCat
instCompactSpaceAutFunctorFintypeCat
CategoryTheory.GaloisCategory.toPreGaloisCategory
instIsTopologicalGroupAutFunctorFintypeCat
instCompactSpaceAutFunctorFintypeCat
FunctorToFintypeCat.naturality
FiberFunctor.isPretransitive_of_isConnected
IsGalois.toIsConnected
continuousSMul_aut_fiber
CategoryTheory.Aut.ext
CategoryTheory.NatTrans.ext'
FintypeCat.hom_ext
instIsPretransitiveCarrierObjFintypeCatOfIsConnected 📖mathematicalMulAction.IsPretransitive
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
isPretransitive_of_surjective
IsFundamentalGroup.toIsNaturalSMul
Function.Bijective.surjective
toAut_bijective
isPretransitive_of_surjective 📖mathematicalCategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
MulAction.IsPretransitive
FintypeCat.carrier
CategoryTheory.Functor.obj
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.exists_smul_eq
FiberFunctor.isPretransitive_of_isConnected
toAutHomeo_apply 📖mathematicalDFunLike.coe
Homeomorph
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
instTopologicalSpaceAutFunctorFintypeCat
EquivLike.toFunLike
Homeomorph.instEquivLike
toAutHomeo
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
IsFundamentalGroup.toIsNaturalSMul
CategoryTheory.GaloisCategory.toPreGaloisCategory
toAutMulEquiv_apply 📖mathematicalDFunLike.coe
MulEquiv
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
toAutMulEquiv
MonoidHom
MonoidHom.instFunLike
toAut
IsFundamentalGroup.toIsNaturalSMul
CategoryTheory.GaloisCategory.toPreGaloisCategory
toAutMulEquiv_isHomeomorph 📖mathematicalIsHomeomorph
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
instTopologicalSpaceAutFunctorFintypeCat
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
toAutMulEquiv
CategoryTheory.GaloisCategory.toPreGaloisCategory
toAut_isHomeomorph
toAut_bijective 📖mathematicalFunction.Bijective
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
IsFundamentalGroup.toIsNaturalSMul
CategoryTheory.GaloisCategory.toPreGaloisCategory
IsFundamentalGroup.toIsNaturalSMul
toAut_injective_of_non_trivial
IsFundamentalGroup.non_trivial'
toAut_surjective_of_isPretransitive
IsFundamentalGroup.continuous_smul
IsFundamentalGroup.transitive_of_isGalois
toAut_continuous 📖mathematicalContinuousSMul
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instTopologicalSpaceCarrierObjFintypeCat
Continuous
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
instTopologicalSpaceAutFunctorFintypeCat
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
CategoryTheory.GaloisCategory.toPreGaloisCategory
continuous_of_continuousAt_one
instContinuousMulAutFunctorFintypeCat
MonoidHom.instMonoidHomClass
continuousAt_def
map_one
MonoidHomClass.toOneHomClass
Filter.HasBasis.mem_iff'
nhds_one_has_basis_stabilizers
mem_nhds_iff
Set.preimage_mono
stabilizer_isOpen
obj_discreteTopology
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
toAut_hom_app_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
MonoidHom
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
toAut_injective_of_non_trivial 📖mathematicalInvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
MonoidHom.ker_eq_bot_iff
eq_bot_iff
toAut_hom_app_apply
FintypeCat.id_apply
toAut_isHomeomorph 📖mathematicalIsHomeomorph
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
instTopologicalSpaceAutFunctorFintypeCat
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
IsFundamentalGroup.toIsNaturalSMul
CategoryTheory.GaloisCategory.toPreGaloisCategory
IsFundamentalGroup.toIsNaturalSMul
isHomeomorph_iff_continuous_bijective
instT2SpaceAutFunctorFintypeCat
toAut_continuous
IsFundamentalGroup.continuous_smul
toAut_bijective
toAut_surjective_isGalois 📖mathematicalFintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.GaloisCategory.toPreGaloisCategory
nonempty_fiber_of_isConnected
IsGalois.toIsConnected
MulAction.exists_smul_eq
action_ext_of_isGalois
toAut_surjective_isGalois_finite_family 📖mathematicalIsGalois
MulAction.IsPretransitive
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.GaloisCategory.toPreGaloisCategory
nonempty_fiber_of_isConnected
IsGalois.toIsConnected
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
instHasFiniteLimits
CategoryTheory.Limits.FintypeCat.hasFiniteLimits
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
CategoryTheory.Limits.instPreservesFiniteProductsOfPreservesFiniteLimits
FiberFunctor.instPreservesFiniteLimitsFintypeCat
FintypeCat.inv_hom_id_apply
CategoryTheory.Limits.FintypeCat.productEquiv_symm_comp_π_apply
exists_hom_from_galois_of_fiber
toAut_surjective_isGalois
action_ext_of_isGalois
IsNaturalSMul.naturality
FunctorToFintypeCat.naturality
toAut_surjective_of_isPretransitive 📖mathematicalContinuousSMul
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instTopologicalSpaceCarrierObjFintypeCat
MulAction.IsPretransitive
CategoryTheory.Aut
CategoryTheory.Functor
CategoryTheory.Functor.category
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
toAut
CategoryTheory.GaloisCategory.toPreGaloisCategory
Set.univ_inter
IsCompact.inter_iInter_nonempty
CompactSpace.isCompact_univ
IsClosed.leftCoset
IsTopologicalGroup.toContinuousMul
Subgroup.isClosed_of_isOpen
stabilizer_isOpen
obj_discreteTopology
toAut_surjective_isGalois_finite_family
Finite.of_fintype
PointedGaloisObject.isGalois
mem_leftCoset_iff
SetLike.mem_coe
MulAction.mem_stabilizer_iff
SemigroupAction.mul_smul
inv_smul_smul
CategoryTheory.Iso.ext
natTrans_ext_of_isGalois
FintypeCat.hom_ext
smul_eq_mul
toAut_surjective_isGalois

CategoryTheory.PreGaloisCategory.IsFundamentalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_smul 📖mathematicalContinuousSMul
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
CategoryTheory.PreGaloisCategory.instTopologicalSpaceCarrierObjFintypeCat
non_trivial 📖mathematicalFintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
non_trivial'
non_trivial' 📖mathematicalFintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
toIsNaturalSMul 📖mathematicalCategoryTheory.PreGaloisCategory.IsNaturalSMul
transitive_of_isGalois 📖mathematicalMulAction.IsPretransitive
FintypeCat.carrier
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction

CategoryTheory.PreGaloisCategory.IsNaturalSMul

Theorems

NameKindAssumesProvesValidatesDepends On
naturality 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction

---

← Back to Index