Documentation Verification Report

Prorepresentability

📁 Source: Mathlib/CategoryTheory/Galois/Prorepresentability.lean

Statistics

MetricCount
DefinitionsAutGalois, π, PointedGaloisObject, val, cocone, incl, instCategory, instCoeDep, instCoeHomHomObj, isColimit, obj, pt, autGaloisSystem, autIsoFibers, autMulEquivAutGalois, endEquivAutGalois, endEquivSectionsFibers, endMulEquivAutGalois, instGroupAutGalois
19
Theoremsext, π_apply, π_surjective, isPretransitive_of_isConnected, isPretransitive_of_isGalois, end_isIso, end_isUnit, comp, ext, ext_iff, cocone_app, comp_val, comp_val_assoc, hom_ext, hom_ext_iff, id_val, incl_map, incl_obj, instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, instIsCofilteredOrEmpty, isGalois, autGaloisSystem_map, autGaloisSystem_map_surjective, autGaloisSystem_obj_coe, autIsoFibers_inv_app, autMulEquivAutGalois_symm_app, autMulEquivAutGalois_π, endEquivAutGalois_mul, endEquivAutGalois_π, endEquivSectionsFibers_π, endMulEquivAutGalois_pi
31
Total50

CategoryTheory.PreGaloisCategory

Definitions

NameCategoryTheorems
AutGalois 📖CompOp
7 mathmath: autMulEquivAutGalois_symm_app, autMulEquivAutGalois_π, endEquivAutGalois_mul, AutGalois.π_apply, endEquivAutGalois_π, AutGalois.π_surjective, endMulEquivAutGalois_pi
PointedGaloisObject 📖CompData
15 mathmath: endEquivSectionsFibers_π, PointedGaloisObject.incl_obj, autIsoFibers_inv_app, PointedGaloisObject.instIsCofilteredOrEmpty, nhds_one_has_basis_stabilizers, PointedGaloisObject.incl_map, PointedGaloisObject.comp_val, AutGalois.π_apply, PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, PointedGaloisObject.comp_val_assoc, autGaloisSystem_map, PointedGaloisObject.cocone_app, autGaloisSystem_map_surjective, autGaloisSystem_obj_coe, PointedGaloisObject.id_val
autGaloisSystem 📖CompOp
5 mathmath: autIsoFibers_inv_app, AutGalois.π_apply, autGaloisSystem_map, autGaloisSystem_map_surjective, autGaloisSystem_obj_coe
autIsoFibers 📖CompOp
1 mathmath: autIsoFibers_inv_app
autMulEquivAutGalois 📖CompOp
2 mathmath: autMulEquivAutGalois_symm_app, autMulEquivAutGalois_π
endEquivAutGalois 📖CompOp
2 mathmath: endEquivAutGalois_mul, endEquivAutGalois_π
endEquivSectionsFibers 📖CompOp
1 mathmath: endEquivSectionsFibers_π
endMulEquivAutGalois 📖CompOp
1 mathmath: endMulEquivAutGalois_pi
instGroupAutGalois 📖CompOp
7 mathmath: autMulEquivAutGalois_symm_app, autMulEquivAutGalois_π, endEquivAutGalois_mul, AutGalois.π_apply, endEquivAutGalois_π, AutGalois.π_surjective, endMulEquivAutGalois_pi

Theorems

NameKindAssumesProvesValidatesDepends On
autGaloisSystem_map 📖mathematicalCategoryTheory.Functor.map
PointedGaloisObject
PointedGaloisObject.instCategory
GrpCat
GrpCat.instCategory
autGaloisSystem
GrpCat.ofHom
CategoryTheory.Aut
PointedGaloisObject.obj
CategoryTheory.Aut.instGroup
autMapHom
PointedGaloisObject.isGalois
PointedGaloisObject.Hom.val
autGaloisSystem_map_surjective 📖mathematicalGrpCat.carrier
CategoryTheory.Functor.obj
PointedGaloisObject
PointedGaloisObject.instCategory
GrpCat
GrpCat.instCategory
autGaloisSystem
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
GrpCat.instConcreteCategoryMonoidHomCarrier
CategoryTheory.Functor.map
IsGalois.toIsConnected
PointedGaloisObject.isGalois
autMap_surjective_of_isGalois
autGaloisSystem_obj_coe 📖mathematicalGrpCat.carrier
CategoryTheory.Functor.obj
PointedGaloisObject
PointedGaloisObject.instCategory
GrpCat
GrpCat.instCategory
autGaloisSystem
CategoryTheory.Aut
PointedGaloisObject.obj
autIsoFibers_inv_app 📖mathematicalCategoryTheory.NatTrans.app
PointedGaloisObject
PointedGaloisObject.instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
PointedGaloisObject.incl
FintypeCat
FintypeCat.instCategory
FintypeCat.incl
GrpCat
GrpCat.instCategory
autGaloisSystem
CategoryTheory.forget
MonoidHom
GrpCat.carrier
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
GrpCat.instConcreteCategoryMonoidHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
autIsoFibers
DFunLike.coe
Equiv
FintypeCat.carrier
CategoryTheory.Functor.obj
PointedGaloisObject.obj
CategoryTheory.Aut
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
evaluationEquivOfIsGalois
PointedGaloisObject.isGalois
PointedGaloisObject.pt
CategoryTheory.GaloisCategory.toPreGaloisCategory
autMulEquivAutGalois_symm_app 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
MulEquiv
MulOpposite
AutGalois
CategoryTheory.Aut
MulOpposite.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupAutGalois
CategoryTheory.Aut.instGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autMulEquivAutGalois
PreOpposite.op'
PointedGaloisObject.obj
IsGalois
CategoryTheory.Functor.map
MonoidHom
MonoidHom.instFunLike
AutGalois.π
CategoryTheory.GaloisCategory.toPreGaloisCategory
autMulEquivAutGalois_π
MulEquiv.apply_symm_apply
autMulEquivAutGalois_π 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
PointedGaloisObject.obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
MonoidHom
AutGalois
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
AutGalois.π
MulOpposite.unop
MulEquiv
CategoryTheory.Functor
CategoryTheory.Functor.category
MulOpposite
MulOne.toMul
MulOpposite.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
autMulEquivAutGalois
CategoryTheory.NatTrans.app
CategoryTheory.GaloisCategory.toPreGaloisCategory
endEquivAutGalois_π
endEquivAutGalois_mul 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.End
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
AutGalois
EquivLike.toFunLike
Equiv.instEquivLike
endEquivAutGalois
CategoryTheory.CategoryStruct.comp
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupAutGalois
CategoryTheory.GaloisCategory.toPreGaloisCategory
AutGalois.ext
evaluation_aut_injective_of_isConnected
IsGalois.toIsConnected
PointedGaloisObject.isGalois
endEquivAutGalois_π
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
CategoryTheory.Functor.map_comp
CategoryTheory.NatTrans.naturality
FintypeCat.comp_apply
endEquivAutGalois_π 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
PointedGaloisObject.obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
MonoidHom
AutGalois
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
AutGalois.π
Equiv
CategoryTheory.End
CategoryTheory.Functor
CategoryTheory.Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
endEquivAutGalois
PointedGaloisObject.pt
CategoryTheory.NatTrans.app
CategoryTheory.GaloisCategory.toPreGaloisCategory
PointedGaloisObject.isGalois
endEquivSectionsFibers_π
evaluationEquivOfIsGalois_symm_fiber
endEquivSectionsFibers_π 📖mathematicalSet
Set.instMembership
CategoryTheory.Functor.sections
PointedGaloisObject
PointedGaloisObject.instCategory
CategoryTheory.Functor.comp
CategoryTheory.types
PointedGaloisObject.incl
FintypeCat
FintypeCat.instCategory
FintypeCat.incl
DFunLike.coe
Equiv
CategoryTheory.End
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
endEquivSectionsFibers
CategoryTheory.Functor.obj
PointedGaloisObject.obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
FintypeCat.concreteCategoryFintype
CategoryTheory.NatTrans.app
PointedGaloisObject.pt
CategoryTheory.GaloisCategory.toPreGaloisCategory
PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda
FintypeCat.instFullIncl
FintypeCat.instFaithfulIncl
CategoryTheory.Limits.Types.limitEquivSections_apply
CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply
CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom
CategoryTheory.Functor.map_id
CategoryTheory.id_apply
endMulEquivAutGalois_pi 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
PointedGaloisObject.obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
MonoidHom
AutGalois
CategoryTheory.Aut
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
AutGalois.π
MulOpposite.unop
MulEquiv
CategoryTheory.End
CategoryTheory.Functor
CategoryTheory.Functor.category
MulOpposite
CategoryTheory.End.mul
MulOpposite.instMul
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
endMulEquivAutGalois
PointedGaloisObject.pt
CategoryTheory.NatTrans.app
CategoryTheory.GaloisCategory.toPreGaloisCategory
endEquivAutGalois_π

CategoryTheory.PreGaloisCategory.AutGalois

Definitions

NameCategoryTheorems
π 📖CompOp
6 mathmath: CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_π, π_apply, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, π_surjective, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖DFunLike.coe
MonoidHom
CategoryTheory.PreGaloisCategory.AutGalois
CategoryTheory.Aut
CategoryTheory.PreGaloisCategory.PointedGaloisObject.obj
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.PreGaloisCategory.instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
π
π_apply 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.PreGaloisCategory.AutGalois
CategoryTheory.Aut
CategoryTheory.PreGaloisCategory.PointedGaloisObject.obj
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.PreGaloisCategory.instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
π
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.PreGaloisCategory.PointedGaloisObject
CategoryTheory.PreGaloisCategory.PointedGaloisObject.instCategory
CategoryTheory.Functor.comp
GrpCat
GrpCat.instCategory
CategoryTheory.types
CategoryTheory.PreGaloisCategory.autGaloisSystem
CategoryTheory.forget
GrpCat.carrier
GrpCat.str
GrpCat.instConcreteCategoryMonoidHomCarrier
π_surjective 📖mathematicalCategoryTheory.PreGaloisCategory.AutGalois
CategoryTheory.Aut
CategoryTheory.PreGaloisCategory.PointedGaloisObject.obj
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.PreGaloisCategory.instGroupAutGalois
CategoryTheory.Aut.instGroup
MonoidHom.instFunLike
π
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.PreGaloisCategory.instFiniteAutOfIsConnected
CategoryTheory.PreGaloisCategory.IsGalois.toIsConnected
CategoryTheory.PreGaloisCategory.PointedGaloisObject.isGalois
CategoryTheory.Functor.eval_section_surjective_of_surjective
CategoryTheory.PreGaloisCategory.PointedGaloisObject.instIsCofilteredOrEmpty
One.instNonempty
CategoryTheory.PreGaloisCategory.autGaloisSystem_map_surjective

CategoryTheory.PreGaloisCategory.FiberFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
isPretransitive_of_isConnected 📖mathematicalMulAction.IsPretransitive
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
FintypeCat.carrier
CategoryTheory.Functor.obj
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
CategoryTheory.PreGaloisCategory.instMulActionAutFunctorFintypeCatCarrierObj
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.exists_smul_eq
comp_right
FintypeCat.instIsEquivalenceUSwitch
FintypeCat.hom_ext
FintypeCat.uSwitchEquiv_naturality
CategoryTheory.Functor.comp_map
FunctorToFintypeCat.naturality
FintypeCat.uSwitchEquiv_symm_naturality
Equiv.apply_symm_apply
isPretransitive_of_isGalois 📖mathematicalMulAction.IsPretransitive
CategoryTheory.Aut
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
FintypeCat.carrier
CategoryTheory.Functor.obj
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Aut.instGroup
MulAction.toSemigroupAction
CategoryTheory.PreGaloisCategory.instMulActionAutFunctorFintypeCatCarrierObj
CategoryTheory.GaloisCategory.toPreGaloisCategory
MulAction.IsPretransitive.exists_smul_eq
CategoryTheory.PreGaloisCategory.isPretransitive_of_isGalois
CategoryTheory.PreGaloisCategory.AutGalois.π_surjective
CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app

CategoryTheory.PreGaloisCategory.FibreFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
end_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.category
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.isUnit_iff_isIso
end_isUnit
end_isUnit 📖mathematicalIsUnit
CategoryTheory.End
CategoryTheory.Functor
FintypeCat
FintypeCat.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.End.monoid
CategoryTheory.GaloisCategory.toPreGaloisCategory
isUnit_map_iff
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
isLocalHom_equiv
Group.isUnit

CategoryTheory.PreGaloisCategory.PointedGaloisObject

Definitions

NameCategoryTheorems
cocone 📖CompOp
1 mathmath: cocone_app
incl 📖CompOp
6 mathmath: CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, incl_obj, CategoryTheory.PreGaloisCategory.autIsoFibers_inv_app, incl_map, instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, cocone_app
instCategory 📖CompOp
14 mathmath: CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, incl_obj, CategoryTheory.PreGaloisCategory.autIsoFibers_inv_app, instIsCofilteredOrEmpty, incl_map, comp_val, CategoryTheory.PreGaloisCategory.AutGalois.π_apply, instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, comp_val_assoc, CategoryTheory.PreGaloisCategory.autGaloisSystem_map, cocone_app, CategoryTheory.PreGaloisCategory.autGaloisSystem_map_surjective, CategoryTheory.PreGaloisCategory.autGaloisSystem_obj_coe, id_val
instCoeDep 📖CompOp
instCoeHomHomObj 📖CompOp
isColimit 📖CompOp
obj 📖CompOp
18 mathmath: CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, incl_obj, isGalois, CategoryTheory.PreGaloisCategory.autIsoFibers_inv_app, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, CategoryTheory.PreGaloisCategory.nhds_one_has_basis_stabilizers, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_π, comp_val, Hom.comp, CategoryTheory.PreGaloisCategory.AutGalois.π_apply, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, comp_val_assoc, CategoryTheory.PreGaloisCategory.autGaloisSystem_map, CategoryTheory.PreGaloisCategory.AutGalois.π_surjective, cocone_app, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi, CategoryTheory.PreGaloisCategory.autGaloisSystem_obj_coe, id_val
pt 📖CompOp
7 mathmath: CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, CategoryTheory.PreGaloisCategory.autIsoFibers_inv_app, CategoryTheory.PreGaloisCategory.nhds_one_has_basis_stabilizers, Hom.comp, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, cocone_app, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.PreGaloisCategory.PointedGaloisObject
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
incl
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
cocone
CategoryTheory.Limits.Cocone.ι
DFunLike.coe
FintypeCat
FintypeCat.instCategory
obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
pt
comp_val 📖mathematicalHom.val
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreGaloisCategory.PointedGaloisObject
CategoryTheory.Category.toCategoryStruct
instCategory
obj
comp_val_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
Hom.val
CategoryTheory.PreGaloisCategory.PointedGaloisObject
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_val
hom_ext 📖Hom.valHom.ext
hom_ext_iff 📖mathematicalHom.valhom_ext
id_val 📖mathematicalHom.val
CategoryTheory.CategoryStruct.id
CategoryTheory.PreGaloisCategory.PointedGaloisObject
CategoryTheory.Category.toCategoryStruct
instCategory
obj
incl_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.PreGaloisCategory.PointedGaloisObject
instCategory
incl
Hom.val
incl_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.PreGaloisCategory.PointedGaloisObject
instCategory
incl
obj
instHasColimitOppositeFunctorTypeCompOpInclCoyoneda 📖mathematicalCategoryTheory.Limits.HasColimit
Opposite
CategoryTheory.PreGaloisCategory.PointedGaloisObject
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
incl
CategoryTheory.coyoneda
CategoryTheory.GaloisCategory.toPreGaloisCategory
instIsCofilteredOrEmpty 📖mathematicalCategoryTheory.IsCofilteredOrEmpty
CategoryTheory.PreGaloisCategory.PointedGaloisObject
instCategory
CategoryTheory.GaloisCategory.toPreGaloisCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.PreGaloisCategory.instHasBinaryProducts
CategoryTheory.PreGaloisCategory.exists_hom_from_galois_of_fiber
CategoryTheory.Functor.map_comp
CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_fst_apply
CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_snd_apply
hom_ext
CategoryTheory.PreGaloisCategory.evaluation_injective_of_isConnected
CategoryTheory.PreGaloisCategory.IsGalois.toIsConnected
CategoryTheory.comp_apply
isGalois 📖mathematicalCategoryTheory.PreGaloisCategory.IsGalois
obj

CategoryTheory.PreGaloisCategory.PointedGaloisObject.Hom

Definitions

NameCategoryTheorems
val 📖CompOp
8 mathmath: CategoryTheory.PreGaloisCategory.PointedGaloisObject.hom_ext_iff, CategoryTheory.PreGaloisCategory.PointedGaloisObject.incl_map, CategoryTheory.PreGaloisCategory.PointedGaloisObject.comp_val, ext_iff, comp, CategoryTheory.PreGaloisCategory.PointedGaloisObject.comp_val_assoc, CategoryTheory.PreGaloisCategory.autGaloisSystem_map, CategoryTheory.PreGaloisCategory.PointedGaloisObject.id_val

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.PreGaloisCategory.PointedGaloisObject.obj
FintypeCat.carrier
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
CategoryTheory.Functor.map
val
CategoryTheory.PreGaloisCategory.PointedGaloisObject.pt
ext 📖val
ext_iff 📖mathematicalvalext

---

← Back to Index