📁 Source: Mathlib/CategoryTheory/Generator/Abelian.lean
has_injective_coseparator
has_projective_separator
CategoryTheory.IsSeparator
CategoryTheory.Injective
CategoryTheory.IsCoseparator
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasProductsOfShape_of_small
CategoryTheory.small_subobject
CategoryTheory.instLocallySmallOpposite
CategoryTheory.locallySmall_of_univLE
UnivLE.self
wellPowered_opposite
CategoryTheory.wellPowered_of_isDetector
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
hasFiniteLimits
CategoryTheory.IsSeparator.isDetector
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
toIsNormalMonoCategory
CategoryTheory.Limits.hasProductsOfShape_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Injective.injective_under
CategoryTheory.Preadditive.isCoseparator_iff
CategoryTheory.Preadditive.isSeparator_iff
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.op_mono_of_epi
CategoryTheory.Limits.instEpiFactorThruImageOfHasLimitWalkingParallelPairParallelPair
hasEqualizers
CategoryTheory.Limits.isSplitEpi_pi_π
CategoryTheory.Limits.zero_of_comp_mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.section_isSplitMono
CategoryTheory.Injective.ι_mono
CategoryTheory.Limits.instMonoι
CategoryTheory.Injective.comp_factorThru
CategoryTheory.Limits.image.fac_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.image.fac
CategoryTheory.Limits.zero_comp
CategoryTheory.Projective
CategoryTheory.Limits.hasLimits_op_of_hasColimits
CategoryTheory.Injective.instEnoughInjectivesOppositeOfEnoughProjectives
CategoryTheory.isSeparator_op_iff
CategoryTheory.Injective.instProjectiveUnopOfOpposite
CategoryTheory.isSeparator_unop_iff
---
← Back to Index