Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Generator/Basic.lean

Statistics

MetricCount
DefinitionsHasCodetector, HasCoseparator, HasDetector, HasSeparator, IsCodetecting, IsCodetector, IsCoseparating, IsCoseparator, IsDetecting, IsDetector, IsSeparating, IsSeparator, IsCodetecting, IsCoseparating, IsDetecting, IsSeparating, coproductFrom, coproductFromFamily, productTo, productToFamily, ΞΉCoproductFrom, Ο€ProductTo, codetector, coseparator, detector, separator
26
TheoremsisSeparating_inverseImage_proj, isSeparating_proj_preimage, hasCodetector, hasCoseparator, hasDetector_of_hasCodetector_op, hasDetector_op, hasCodetector, hasCoseparator, hasSeparator_of_hasCoseparator_op, hasSeparator_op, of_equivalence, hasCodetector_of_hasDetector_op, hasCodetector_op, hasDetector, hasSeparator, wellPowered, hasCoseparator_of_hasSeparator_op, hasCoseparator_op, hasDetector, hasSeparator, of_equivalence, wellPowered, isCoseparating, isIso_iff_of_epi, mono, def, isCoseparator, isCodetecting, mono, of_equivalence, def, isCodetector, of_equivalence, isIso_iff_of_mono, isSeparating, mono, def, isSeparator, isDetecting, isSeparator_coproduct, mono, of_equivalence, def, isDetector, of_equivalence, isCoseparating, isIso_iff_of_epi, of_le, epi_iff, isCodetecting, mk_of_exists_limitsOfShape, mk_of_exists_mono, mono_productTo, of_equivalence, of_le, isIso_iff_of_mono, isSeparating, of_le, epi_coproductFrom, isDetecting, isSeparator_coproduct, mk_of_exists_colimitsOfShape, mk_of_exists_epi, mono_iff, of_equivalence, of_le, isCodetecting_bot_of_isGroupoid, isCodetecting_iff_isCoseparating, isCodetecting_op_iff, isCodetecting_unop_iff, isCoseparating_bot_of_isThin, isCoseparating_iff_mono, isCoseparating_op_iff, isCoseparating_unop_iff, isDetecting_bot_of_isGroupoid, isDetecting_iff_isSeparating, isDetecting_op_iff, isDetecting_unop_iff, isGroupoid_of_isCodetecting_bot, isGroupoid_of_isDetecting_bot, isSeparating_bot_of_isThin, isSeparating_iff_epi, isSeparating_op_iff, isSeparating_unop_iff, isThin_of_isCoseparating_bot, isThin_of_isSeparating_bot, isCoseparating_inverseImage_proj, isCoseparating_proj_preimage, eq_of_isDetecting, eq_of_le_of_isDetecting, inf_eq_of_isDetecting, groupoid_of_isCodetecting_empty, groupoid_of_isDetecting_empty, hasCodetector_op_iff, hasCoseparator_op_iff, hasDetector_op_iff, hasInitial_of_isCoseparating, hasSeparator_op_iff, hasTerminal_of_isSeparating, isCodetecting_empty_of_groupoid, isCodetecting_iff_isCoseparating, isCodetecting_op_iff, isCodetecting_unop_iff, isCodetector_codetector, isCodetector_coseparator, isCodetector_def, isCodetector_iff_reflectsIsomorphisms_yoneda_obj, isCodetector_op_iff, isCodetector_unop_iff, isCoseparating_empty_of_thin, isCoseparating_iff_mono, isCoseparating_op_iff, isCoseparating_unop_iff, isCoseparator_codetector, isCoseparator_coseparator, isCoseparator_def, isCoseparator_iff_faithful_yoneda_obj, isCoseparator_iff_mono, isCoseparator_iff_of_isLimit_fan, isCoseparator_of_isLimit_fan, isCoseparator_op_iff, isCoseparator_pi, isCoseparator_pi_of_isCoseparator, isCoseparator_prod, isCoseparator_prod_of_isCoseparator_left, isCoseparator_prod_of_isCoseparator_right, isCoseparator_unop_iff, isDetecting_empty_of_groupoid, isDetecting_iff_isSeparating, isDetecting_op_iff, isDetecting_unop_iff, isDetector_def, isDetector_detector, isDetector_iff_reflectsIsomorphisms_coyoneda_obj, isDetector_op_iff, isDetector_separator, isDetector_unop_iff, isSeparating_empty_of_thin, isSeparating_iff_epi, isSeparating_op_iff, isSeparating_unop_iff, isSeparator_coprod, isSeparator_coprod_of_isSeparator_left, isSeparator_coprod_of_isSeparator_right, isSeparator_def, isSeparator_detector, isSeparator_iff_epi, isSeparator_iff_faithful_coyoneda_obj, isSeparator_iff_of_isColimit_cofan, isSeparator_of_isColimit_cofan, isSeparator_op_iff, isSeparator_separator, isSeparator_sigma, isSeparator_sigma_of_isSeparator, isSeparator_unop_iff, thin_of_isCoseparating_empty, thin_of_isSeparating_empty, wellPowered_of_isDetecting, wellPowered_of_isDetector, wellPowered_of_isSeparator
160
Total186

CategoryTheory

Definitions

NameCategoryTheorems
HasCodetector πŸ“–CompData
5 mathmath: HasDetector.hasCodetector_of_hasDetector_op, HasCoseparator.hasCodetector, HasDetector.hasCodetector_op, hasDetector_op_iff, hasCodetector_op_iff
HasCoseparator πŸ“–CompData
7 mathmath: HasCoseparator.of_equivalence, IsGrothendieckAbelian.instHasCoseparator, HasSeparator.hasCoseparator_op, hasCoseparator_op_iff, HasCodetector.hasCoseparator, HasSeparator.hasCoseparator_of_hasSeparator_op, hasSeparator_op_iff
HasDetector πŸ“–CompData
5 mathmath: HasCodetector.hasDetector_of_hasCodetector_op, HasSeparator.hasDetector, hasDetector_op_iff, HasCodetector.hasDetector_op, hasCodetector_op_iff
HasSeparator πŸ“–CompData
11 mathmath: HasSeparator.of_equivalence, instHasSeparatorModuleCatOfSmall, HasDetector.hasSeparator, IsGrothendieckAbelian.hasSeparator, Sheaf.hasSeparator, Presheaf.hasSeparator, hasCoseparator_op_iff, HasCoseparator.hasSeparator_op, HomologicalComplex.instHasSeparator, HasCoseparator.hasSeparator_of_hasCoseparator_op, hasSeparator_op_iff
IsCodetecting πŸ“–MathDefβ€”
IsCodetector πŸ“–MathDef
10 mathmath: isCodetector_coseparator, isCodetector_unop_iff, IsCoseparator.isCodetector, isDetector_unop_iff, isCodetector_iff_reflectsIsomorphisms_yoneda_obj, HasCodetector.hasCodetector, isCodetector_op_iff, isCodetector_def, isDetector_op_iff, isCodetector_codetector
IsCoseparating πŸ“–MathDefβ€”
IsCoseparator πŸ“–MathDef
19 mathmath: isCoseparator_iff_mono, isCoseparator_iff_faithful_preadditiveYoneda, isCoseparator_of_isLimit_fan, isCoseparator_coseparator, isCoseparator_prod, isCoseparator_codetector, isCoseparator_def, isCoseparator_pi, isCoseparator_iff_faithful_yoneda_obj, isSeparator_op_iff, isCoseparator_iff_faithful_preadditiveYonedaObj, IsCodetector.isCoseparator, isCoseparator_iff_of_isLimit_fan, Preadditive.isCoseparator_iff, Abelian.has_injective_coseparator, isCoseparator_op_iff, HasCoseparator.hasCoseparator, isCoseparator_unop_iff, isSeparator_unop_iff
IsDetecting πŸ“–MathDefβ€”
IsDetector πŸ“–MathDef
10 mathmath: isCodetector_unop_iff, isDetector_detector, IsSeparator.isDetector, isDetector_iff_reflectsIsomorphisms_coyoneda_obj, isDetector_unop_iff, isCodetector_op_iff, isDetector_separator, HasDetector.hasDetector, isDetector_op_iff, isDetector_def
IsSeparating πŸ“–MathDefβ€”
IsSeparator πŸ“–MathDef
26 mathmath: isSeparator_iff_faithful_preadditiveCoyoneda, isSeparator_coprod, HasSeparator.hasSeparator, Preadditive.isSeparator_iff, IsSeparating.isSeparator_coproduct, isSeparator_sigma, isSeparator_iff_faithful_preadditiveCoyonedaObj, Ind.isSeparator_range_yoneda, isSeparator_iff_faithful_coyoneda_obj, Presheaf.isSeparator, isSeparator_iff_of_isColimit_cofan, isSeparator_iff_epi, isSeparator_def, Abelian.has_projective_separator, isSeparator_op_iff, isSeparator_detector, Types.isSeparator_punit, Sheaf.isSeparator, ObjectProperty.IsSeparating.isSeparator_coproduct, isCoseparator_op_iff, IsDetector.isSeparator, isSeparator_separator, isSeparator_of_isColimit_cofan, isCoseparator_unop_iff, isSeparator_unop_iff, ModuleCat.isSeparator
codetector πŸ“–CompOp
2 mathmath: isCoseparator_codetector, isCodetector_codetector
coseparator πŸ“–CompOp
2 mathmath: isCodetector_coseparator, isCoseparator_coseparator
detector πŸ“–CompOp
2 mathmath: isDetector_detector, isSeparator_detector
separator πŸ“–CompOp
2 mathmath: isDetector_separator, isSeparator_separator

Theorems

NameKindAssumesProvesValidatesDepends On
groupoid_of_isCodetecting_empty πŸ“–mathematicalObjectProperty.IsCodetecting
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
IsGroupoidβ€”ObjectProperty.isGroupoid_of_isCodetecting_bot
groupoid_of_isDetecting_empty πŸ“–mathematicalObjectProperty.IsDetecting
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
IsGroupoidβ€”ObjectProperty.isGroupoid_of_isDetecting_bot
hasCodetector_op_iff πŸ“–mathematicalβ€”HasCodetector
Opposite
Category.opposite
HasDetector
β€”isDetector_unop_iff
isCodetector_op_iff
hasCoseparator_op_iff πŸ“–mathematicalβ€”HasCoseparator
Opposite
Category.opposite
HasSeparator
β€”isSeparator_unop_iff
isCoseparator_op_iff
hasDetector_op_iff πŸ“–mathematicalβ€”HasDetector
Opposite
Category.opposite
HasCodetector
β€”isCodetector_unop_iff
isDetector_op_iff
hasInitial_of_isCoseparating πŸ“–mathematicalObjectProperty.IsCoseparatingLimits.HasInitialβ€”Limits.hasFiniteLimits_of_hasLimitsOfSize
Limits.hasLimitOfHasLimitsOfShape
Limits.hasProductsOfShape_of_small
Limits.hasProductsOfShape_of_hasProducts
Limits.hasLimitsOfShapeOfHasLimits
ObjectProperty.IsCoseparating.mono_productTo
StructuredArrow.instSmallOfLocallySmall
ObjectProperty.instSmallFullSubcategoryOfSmall
ObjectProperty.FullSubcategory.property
Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
Limits.pullback.fst_of_mono
bot_le
Limits.hasLimitsOfShape_of_hasFiniteLimits
IsSplitEpi.mk'
mono_comp
Limits.equalizer.ΞΉ_mono
Subobject.arrow_mono
Subobject.eq_of_comp_arrow_eq
Limits.Pi.hom_ext
Category.assoc
Subobject.ofLEMk_comp
Category.id_comp
Limits.eq_of_epi_equalizer
IsSplitEpi.epi
Limits.hasInitial_of_unique
Unique.instSubsingleton
hasSeparator_op_iff πŸ“–mathematicalβ€”HasSeparator
Opposite
Category.opposite
HasCoseparator
β€”isCoseparator_unop_iff
isSeparator_op_iff
hasTerminal_of_isSeparating πŸ“–mathematicalObjectProperty.IsSeparatingLimits.HasTerminalβ€”Limits.hasTerminal_of_hasInitial_op
hasInitial_of_isCoseparating
Limits.hasLimits_op_of_hasColimits
ObjectProperty.instSmallOppositeOp_1
ObjectProperty.isCoseparating_op_iff
isCodetecting_empty_of_groupoid πŸ“–mathematicalβ€”ObjectProperty.IsCodetecting
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”ObjectProperty.isCodetecting_bot_of_isGroupoid
isCodetecting_iff_isCoseparating πŸ“–mathematicalβ€”ObjectProperty.IsCodetecting
ObjectProperty.IsCoseparating
β€”ObjectProperty.isCodetecting_iff_isCoseparating
isCodetecting_op_iff πŸ“–mathematicalβ€”ObjectProperty.IsCodetecting
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsDetecting
β€”ObjectProperty.isCodetecting_op_iff
isCodetecting_unop_iff πŸ“–mathematicalβ€”ObjectProperty.IsCodetecting
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsDetecting
β€”ObjectProperty.isCodetecting_op_iff
isCodetector_codetector πŸ“–mathematicalβ€”IsCodetector
codetector
β€”HasCodetector.hasCodetector
isCodetector_coseparator πŸ“–mathematicalβ€”IsCodetector
coseparator
β€”IsCoseparator.isCodetector
isCoseparator_coseparator
isCodetector_def πŸ“–mathematicalβ€”IsCodetector
IsIso
β€”ObjectProperty.singleton_iff
isCodetector_iff_reflectsIsomorphisms_yoneda_obj πŸ“–mathematicalβ€”IsCodetector
Functor.ReflectsIsomorphisms
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
yoneda
β€”isIso_unop_iff
IsCodetector.def
Function.bijective_iff_existsUnique
isIso_iff_bijective
isCodetector_def
isIso_op_iff
isIso_of_reflects_iso
isCodetector_op_iff πŸ“–mathematicalβ€”IsCodetector
Opposite
Category.opposite
Opposite.op
IsDetector
β€”IsDetector.eq_1
IsCodetector.eq_1
ObjectProperty.isCodetecting_op_iff
ObjectProperty.op_singleton
isCodetector_unop_iff πŸ“–mathematicalβ€”IsCodetector
Opposite.unop
IsDetector
Opposite
Category.opposite
β€”IsDetector.eq_1
IsCodetector.eq_1
ObjectProperty.isCodetecting_unop_iff
ObjectProperty.unop_singleton
isCoseparating_empty_of_thin πŸ“–mathematicalQuiver.IsThin
CategoryStruct.toQuiver
Category.toCategoryStruct
ObjectProperty.IsCoseparating
Bot.bot
ObjectProperty
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”ObjectProperty.isCoseparating_bot_of_isThin
isCoseparating_iff_mono πŸ“–mathematicalLimits.HasProduct
StructuredArrow
ObjectProperty.FullSubcategory
ObjectProperty.FullSubcategory.category
ObjectProperty.ΞΉ
ObjectProperty.productToFamily
ObjectProperty.IsCoseparating
Mono
Limits.piObj
ObjectProperty.productTo
β€”ObjectProperty.isCoseparating_iff_mono
isCoseparating_op_iff πŸ“–mathematicalβ€”ObjectProperty.IsCoseparating
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsSeparating
β€”ObjectProperty.isCoseparating_op_iff
isCoseparating_unop_iff πŸ“–mathematicalβ€”ObjectProperty.IsCoseparating
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsSeparating
β€”ObjectProperty.isCoseparating_op_iff
isCoseparator_codetector πŸ“–mathematicalβ€”IsCoseparator
codetector
β€”IsCodetector.isCoseparator
isCodetector_codetector
isCoseparator_coseparator πŸ“–mathematicalβ€”IsCoseparator
coseparator
β€”HasCoseparator.hasCoseparator
isCoseparator_def πŸ“–mathematicalβ€”IsCoseparatorβ€”ObjectProperty.singleton_iff
isCoseparator_iff_faithful_yoneda_obj πŸ“–mathematicalβ€”IsCoseparator
Functor.Faithful
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
yoneda
β€”IsCoseparator.def
isCoseparator_def
Functor.map_injective
isCoseparator_iff_mono πŸ“–mathematicalLimits.HasProduct
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
IsCoseparator
Mono
Limits.piObj
Limits.Pi.lift
β€”isCoseparator_def
Category.assoc
Limits.limit.lift_Ο€
eq_whisker
cancel_mono
Limits.limit.hom_ext
isCoseparator_iff_of_isLimit_fan πŸ“–mathematicalβ€”IsCoseparator
Limits.Cone.pt
Discrete
discreteCategory
Discrete.functor
ObjectProperty.IsCoseparating
ObjectProperty.ofObj
Category.toCategoryStruct
β€”IsCoseparator.def
Limits.IsLimit.hom_ext
Category.assoc
isCoseparator_of_isLimit_fan
isCoseparator_of_isLimit_fan πŸ“–mathematicalObjectProperty.IsCoseparating
ObjectProperty.ofObj
Category.toCategoryStruct
IsCoseparator
Limits.Cone.pt
Discrete
discreteCategory
Discrete.functor
β€”isCoseparator_def
Category.assoc
Limits.Fan.IsLimit.lift_proj
Pi.single_eq_same
eq_whisker
isCoseparator_op_iff πŸ“–mathematicalβ€”IsCoseparator
Opposite
Category.opposite
Opposite.op
IsSeparator
β€”IsSeparator.eq_1
IsCoseparator.eq_1
ObjectProperty.isCoseparating_op_iff
ObjectProperty.op_singleton
isCoseparator_pi πŸ“–mathematicalβ€”IsCoseparator
Limits.piObj
ObjectProperty.IsCoseparating
ObjectProperty.ofObj
Category.toCategoryStruct
β€”isCoseparator_iff_of_isLimit_fan
isCoseparator_pi_of_isCoseparator πŸ“–mathematicalIsCoseparatorLimits.piObjβ€”isCoseparator_pi
ObjectProperty.IsCoseparating.of_le
isCoseparator_prod πŸ“–mathematicalβ€”IsCoseparator
Limits.prod
ObjectProperty.IsCoseparating
ObjectProperty.pair
Category.toCategoryStruct
β€”isCoseparator_iff_of_isLimit_fan
isCoseparator_prod_of_isCoseparator_left πŸ“–mathematicalIsCoseparatorLimits.prodβ€”isCoseparator_prod
ObjectProperty.IsCoseparating.of_le
isCoseparator_prod_of_isCoseparator_right πŸ“–mathematicalIsCoseparatorLimits.prodβ€”isCoseparator_prod
ObjectProperty.IsCoseparating.of_le
isCoseparator_unop_iff πŸ“–mathematicalβ€”IsCoseparator
Opposite.unop
IsSeparator
Opposite
Category.opposite
β€”IsSeparator.eq_1
IsCoseparator.eq_1
ObjectProperty.isCoseparating_unop_iff
ObjectProperty.unop_singleton
isDetecting_empty_of_groupoid πŸ“–mathematicalβ€”ObjectProperty.IsDetecting
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”ObjectProperty.isDetecting_bot_of_isGroupoid
isDetecting_iff_isSeparating πŸ“–mathematicalβ€”ObjectProperty.IsDetecting
ObjectProperty.IsSeparating
β€”ObjectProperty.isDetecting_iff_isSeparating
isDetecting_op_iff πŸ“–mathematicalβ€”ObjectProperty.IsDetecting
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsCodetecting
β€”ObjectProperty.isDetecting_op_iff
isDetecting_unop_iff πŸ“–mathematicalβ€”ObjectProperty.IsDetecting
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsCodetecting
β€”ObjectProperty.isDetecting_op_iff
isDetector_def πŸ“–mathematicalβ€”IsDetector
IsIso
β€”ObjectProperty.singleton_iff
isDetector_detector πŸ“–mathematicalβ€”IsDetector
detector
β€”HasDetector.hasDetector
isDetector_iff_reflectsIsomorphisms_coyoneda_obj πŸ“–mathematicalβ€”IsDetector
Functor.ReflectsIsomorphisms
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
β€”IsDetector.def
Function.bijective_iff_existsUnique
isIso_iff_bijective
isDetector_def
isIso_of_reflects_iso
isDetector_op_iff πŸ“–mathematicalβ€”IsDetector
Opposite
Category.opposite
Opposite.op
IsCodetector
β€”IsDetector.eq_1
IsCodetector.eq_1
ObjectProperty.isDetecting_op_iff
ObjectProperty.op_singleton
isDetector_separator πŸ“–mathematicalβ€”IsDetector
separator
β€”IsSeparator.isDetector
isSeparator_separator
isDetector_unop_iff πŸ“–mathematicalβ€”IsDetector
Opposite.unop
IsCodetector
Opposite
Category.opposite
β€”IsDetector.eq_1
IsCodetector.eq_1
ObjectProperty.isDetecting_unop_iff
ObjectProperty.unop_singleton
isSeparating_empty_of_thin πŸ“–mathematicalQuiver.IsThin
CategoryStruct.toQuiver
Category.toCategoryStruct
ObjectProperty.IsSeparating
Bot.bot
ObjectProperty
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”ObjectProperty.isSeparating_bot_of_isThin
isSeparating_iff_epi πŸ“–mathematicalLimits.HasCoproduct
CostructuredArrow
ObjectProperty.FullSubcategory
ObjectProperty.FullSubcategory.category
ObjectProperty.ΞΉ
ObjectProperty.coproductFromFamily
ObjectProperty.IsSeparating
Epi
Limits.sigmaObj
ObjectProperty.coproductFrom
β€”ObjectProperty.isSeparating_iff_epi
isSeparating_op_iff πŸ“–mathematicalβ€”ObjectProperty.IsSeparating
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsCoseparating
β€”ObjectProperty.isSeparating_op_iff
isSeparating_unop_iff πŸ“–mathematicalβ€”ObjectProperty.IsSeparating
Opposite
Category.opposite
ObjectProperty.op
Category.toCategoryStruct
ObjectProperty.IsCoseparating
β€”ObjectProperty.isSeparating_op_iff
isSeparator_coprod πŸ“–mathematicalβ€”IsSeparator
Limits.coprod
ObjectProperty.IsSeparating
ObjectProperty.pair
Category.toCategoryStruct
β€”isSeparator_iff_of_isColimit_cofan
isSeparator_coprod_of_isSeparator_left πŸ“–mathematicalIsSeparatorLimits.coprodβ€”isSeparator_coprod
ObjectProperty.IsSeparating.of_le
isSeparator_coprod_of_isSeparator_right πŸ“–mathematicalIsSeparatorLimits.coprodβ€”isSeparator_coprod
ObjectProperty.IsSeparating.of_le
isSeparator_def πŸ“–mathematicalβ€”IsSeparatorβ€”ObjectProperty.singleton_iff
isSeparator_detector πŸ“–mathematicalβ€”IsSeparator
detector
β€”IsDetector.isSeparator
isDetector_detector
isSeparator_iff_epi πŸ“–mathematicalLimits.HasCoproduct
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
IsSeparator
Epi
Limits.sigmaObj
Limits.Sigma.desc
β€”isSeparator_def
Limits.colimit.ΞΉ_desc_assoc
whisker_eq
cancel_epi
Limits.colimit.hom_ext
isSeparator_iff_faithful_coyoneda_obj πŸ“–mathematicalβ€”IsSeparator
Functor.Faithful
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
β€”IsSeparator.def
isSeparator_def
Functor.map_injective
isSeparator_iff_of_isColimit_cofan πŸ“–mathematicalβ€”IsSeparator
Limits.Cocone.pt
Discrete
discreteCategory
Discrete.functor
ObjectProperty.IsSeparating
ObjectProperty.ofObj
Category.toCategoryStruct
β€”IsSeparator.def
Limits.IsColimit.hom_ext
Category.assoc
isSeparator_of_isColimit_cofan
isSeparator_of_isColimit_cofan πŸ“–mathematicalObjectProperty.IsSeparating
ObjectProperty.ofObj
Category.toCategoryStruct
IsSeparator
Limits.Cocone.pt
Discrete
discreteCategory
Discrete.functor
β€”isSeparator_def
Limits.Cofan.IsColimit.inj_desc_assoc
Pi.single_eq_same
whisker_eq
isSeparator_op_iff πŸ“–mathematicalβ€”IsSeparator
Opposite
Category.opposite
Opposite.op
IsCoseparator
β€”IsSeparator.eq_1
IsCoseparator.eq_1
ObjectProperty.isSeparating_op_iff
ObjectProperty.op_singleton
isSeparator_separator πŸ“–mathematicalβ€”IsSeparator
separator
β€”HasSeparator.hasSeparator
isSeparator_sigma πŸ“–mathematicalβ€”IsSeparator
Limits.sigmaObj
ObjectProperty.IsSeparating
ObjectProperty.ofObj
Category.toCategoryStruct
β€”isSeparator_iff_of_isColimit_cofan
isSeparator_sigma_of_isSeparator πŸ“–mathematicalIsSeparatorLimits.sigmaObjβ€”isSeparator_sigma
ObjectProperty.IsSeparating.of_le
isSeparator_unop_iff πŸ“–mathematicalβ€”IsSeparator
Opposite.unop
IsCoseparator
Opposite
Category.opposite
β€”IsSeparator.eq_1
IsCoseparator.eq_1
ObjectProperty.isSeparating_unop_iff
ObjectProperty.unop_singleton
thin_of_isCoseparating_empty πŸ“–mathematicalObjectProperty.IsCoseparating
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Quiver.IsThin
CategoryStruct.toQuiver
β€”ObjectProperty.isThin_of_isCoseparating_bot
thin_of_isSeparating_empty πŸ“–mathematicalObjectProperty.IsSeparating
Bot.bot
ObjectProperty
Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Quiver.IsThin
CategoryStruct.toQuiver
β€”ObjectProperty.isThin_of_isSeparating_bot
wellPowered_of_isDetecting πŸ“–mathematicalObjectProperty.IsDetectingWellPoweredβ€”small_of_injective
small_set
small_sigma
instSmallHomOfLocallySmall
Subobject.eq_of_isDetecting
wellPowered_of_isDetector πŸ“–mathematicalIsDetectorWellPowered
locallySmall_of_univLE
UnivLE.self
β€”wellPowered_of_isDetecting
ObjectProperty.instSmallOfObjOfSmall
UnivLE.small
univLE_of_max
UnivLE.self
locallySmall_of_univLE
wellPowered_of_isSeparator πŸ“–mathematicalIsSeparatorWellPowered
locallySmall_of_univLE
UnivLE.self
β€”wellPowered_of_isDetecting
ObjectProperty.instSmallOfObjOfSmall
UnivLE.small
univLE_of_max
UnivLE.self
locallySmall_of_univLE
IsSeparator.isDetector

CategoryTheory.CostructuredArrow

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparating_inverseImage_proj πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
β€”ext
isSeparating_proj_preimage πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
β€”isSeparating_inverseImage_proj

CategoryTheory.HasCodetector

Theorems

NameKindAssumesProvesValidatesDepends On
hasCodetector πŸ“–mathematicalβ€”CategoryTheory.IsCodetectorβ€”β€”
hasCoseparator πŸ“–mathematicalβ€”CategoryTheory.HasCoseparatorβ€”CategoryTheory.isCoseparator_codetector
hasDetector_of_hasCodetector_op πŸ“–mathematicalβ€”CategoryTheory.HasDetectorβ€”β€”
hasDetector_op πŸ“–mathematicalβ€”CategoryTheory.HasDetector
Opposite
CategoryTheory.Category.opposite
β€”β€”

CategoryTheory.HasCoseparator

Theorems

NameKindAssumesProvesValidatesDepends On
hasCodetector πŸ“–mathematicalβ€”CategoryTheory.HasCodetectorβ€”CategoryTheory.isCodetector_coseparator
hasCoseparator πŸ“–mathematicalβ€”CategoryTheory.IsCoseparatorβ€”β€”
hasSeparator_of_hasCoseparator_op πŸ“–mathematicalβ€”CategoryTheory.HasSeparatorβ€”β€”
hasSeparator_op πŸ“–mathematicalβ€”CategoryTheory.HasSeparator
Opposite
CategoryTheory.Category.opposite
β€”β€”
of_equivalence πŸ“–mathematicalβ€”CategoryTheory.HasCoseparatorβ€”CategoryTheory.IsCoseparator.of_equivalence
CategoryTheory.isCoseparator_coseparator

CategoryTheory.HasDetector

Theorems

NameKindAssumesProvesValidatesDepends On
hasCodetector_of_hasDetector_op πŸ“–mathematicalβ€”CategoryTheory.HasCodetectorβ€”β€”
hasCodetector_op πŸ“–mathematicalβ€”CategoryTheory.HasCodetector
Opposite
CategoryTheory.Category.opposite
β€”β€”
hasDetector πŸ“–mathematicalβ€”CategoryTheory.IsDetectorβ€”β€”
hasSeparator πŸ“–mathematicalβ€”CategoryTheory.HasSeparatorβ€”CategoryTheory.isSeparator_detector
wellPowered πŸ“–mathematicalβ€”CategoryTheory.WellPowered
CategoryTheory.locallySmall_of_univLE
UnivLE.self
β€”CategoryTheory.wellPowered_of_isDetector
CategoryTheory.isDetector_detector

CategoryTheory.HasSeparator

Theorems

NameKindAssumesProvesValidatesDepends On
hasCoseparator_of_hasSeparator_op πŸ“–mathematicalβ€”CategoryTheory.HasCoseparatorβ€”β€”
hasCoseparator_op πŸ“–mathematicalβ€”CategoryTheory.HasCoseparator
Opposite
CategoryTheory.Category.opposite
β€”β€”
hasDetector πŸ“–mathematicalβ€”CategoryTheory.HasDetectorβ€”CategoryTheory.isDetector_separator
hasSeparator πŸ“–mathematicalβ€”CategoryTheory.IsSeparatorβ€”β€”
of_equivalence πŸ“–mathematicalβ€”CategoryTheory.HasSeparatorβ€”CategoryTheory.IsSeparator.of_equivalence
CategoryTheory.isSeparator_separator
wellPowered πŸ“–mathematicalβ€”CategoryTheory.WellPowered
CategoryTheory.locallySmall_of_univLE
UnivLE.self
β€”CategoryTheory.HasDetector.wellPowered
hasDetector

CategoryTheory.IsCodetecting

Theorems

NameKindAssumesProvesValidatesDepends On
isCoseparating πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCodetectingCategoryTheory.ObjectProperty.IsCoseparatingβ€”CategoryTheory.ObjectProperty.IsCodetecting.isCoseparating
isIso_iff_of_epi πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCodetectingCategoryTheory.IsIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.ObjectProperty.IsCodetecting.isIso_iff_of_epi
mono πŸ“–β€”CategoryTheory.ObjectProperty.IsCodetecting
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”CategoryTheory.ObjectProperty.IsCodetecting.of_le

CategoryTheory.IsCodetector

Theorems

NameKindAssumesProvesValidatesDepends On
def πŸ“–mathematicalCategoryTheory.IsCodetector
ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.IsIsoβ€”CategoryTheory.isCodetector_def
isCoseparator πŸ“–mathematicalCategoryTheory.IsCodetectorCategoryTheory.IsCoseparatorβ€”CategoryTheory.ObjectProperty.IsCodetecting.isCoseparating

CategoryTheory.IsCoseparating

Theorems

NameKindAssumesProvesValidatesDepends On
isCodetecting πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.ObjectProperty.IsCodetectingβ€”CategoryTheory.ObjectProperty.IsCoseparating.isCodetecting
mono πŸ“–β€”CategoryTheory.ObjectProperty.IsCoseparating
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”CategoryTheory.ObjectProperty.IsCoseparating.of_le
of_equivalence πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.ObjectProperty.strictMap
CategoryTheory.Equivalence.functor
β€”CategoryTheory.ObjectProperty.IsCoseparating.of_equivalence

CategoryTheory.IsCoseparator

Theorems

NameKindAssumesProvesValidatesDepends On
def πŸ“–β€”CategoryTheory.IsCoseparator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”CategoryTheory.isCoseparator_def
isCodetector πŸ“–mathematicalCategoryTheory.IsCoseparatorCategoryTheory.IsCodetectorβ€”CategoryTheory.ObjectProperty.IsCoseparating.isCodetecting
of_equivalence πŸ“–mathematicalCategoryTheory.IsCoseparatorCategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
β€”CategoryTheory.ObjectProperty.strictMap_singleton
CategoryTheory.ObjectProperty.IsCoseparating.of_equivalence

CategoryTheory.IsDetecting

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_iff_of_mono πŸ“–mathematicalCategoryTheory.ObjectProperty.IsDetectingCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Functor.map
β€”CategoryTheory.ObjectProperty.IsDetecting.isIso_iff_of_mono
isSeparating πŸ“–mathematicalCategoryTheory.ObjectProperty.IsDetectingCategoryTheory.ObjectProperty.IsSeparatingβ€”CategoryTheory.ObjectProperty.IsDetecting.isSeparating
mono πŸ“–β€”CategoryTheory.ObjectProperty.IsDetecting
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”CategoryTheory.ObjectProperty.IsDetecting.of_le

CategoryTheory.IsDetector

Theorems

NameKindAssumesProvesValidatesDepends On
def πŸ“–mathematicalCategoryTheory.IsDetector
ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.IsIsoβ€”CategoryTheory.isDetector_def
isSeparator πŸ“–mathematicalCategoryTheory.IsDetectorCategoryTheory.IsSeparatorβ€”CategoryTheory.ObjectProperty.IsDetecting.isSeparating

CategoryTheory.IsSeparating

Theorems

NameKindAssumesProvesValidatesDepends On
isDetecting πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.ObjectProperty.IsDetectingβ€”CategoryTheory.ObjectProperty.IsSeparating.isDetecting
isSeparator_coproduct πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsSeparator
CategoryTheory.Limits.sigmaObj
β€”CategoryTheory.ObjectProperty.IsSeparating.isSeparator_coproduct
mono πŸ“–β€”CategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”CategoryTheory.ObjectProperty.IsSeparating.of_le
of_equivalence πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.ObjectProperty.strictMap
CategoryTheory.Equivalence.functor
β€”CategoryTheory.ObjectProperty.IsSeparating.of_equivalence

CategoryTheory.IsSeparator

Theorems

NameKindAssumesProvesValidatesDepends On
def πŸ“–β€”CategoryTheory.IsSeparator
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”CategoryTheory.isSeparator_def
isDetector πŸ“–mathematicalCategoryTheory.IsSeparatorCategoryTheory.IsDetectorβ€”CategoryTheory.ObjectProperty.IsSeparating.isDetecting
of_equivalence πŸ“–mathematicalCategoryTheory.IsSeparatorCategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
β€”CategoryTheory.ObjectProperty.strictMap_singleton
CategoryTheory.ObjectProperty.IsSeparating.of_equivalence

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
IsCodetecting πŸ“–MathDef
14 mathmath: isDetecting_op_iff, CategoryTheory.isCodetecting_empty_of_groupoid, isCodetecting_bot_of_isGroupoid, CategoryTheory.isCodetecting_iff_isCoseparating, CategoryTheory.IsCoseparating.isCodetecting, IsCoseparating.isCodetecting, isDetecting_unop_iff, CategoryTheory.isCodetecting_op_iff, isCodetecting_unop_iff, CategoryTheory.isDetecting_op_iff, isCodetecting_op_iff, CategoryTheory.isDetecting_unop_iff, CategoryTheory.isCodetecting_unop_iff, isCodetecting_iff_isCoseparating
IsCoseparating πŸ“–MathDef
22 mathmath: CategoryTheory.isSeparating_unop_iff, CategoryTheory.isCoseparating_empty_of_thin, IsCodetecting.isCoseparating, isCoseparating_iff_mono, CategoryTheory.isCodetecting_iff_isCoseparating, isCoseparating_op_iff, CategoryTheory.isSeparating_op_iff, isSeparating_unop_iff, CategoryTheory.isCoseparating_op_iff, CategoryTheory.isCoseparating_iff_mono, CategoryTheory.isCoseparator_prod, CategoryTheory.Preadditive.isCoseparating_iff, CategoryTheory.isCoseparator_pi, isCoseparating_unop_iff, CategoryTheory.isCoseparating_unop_iff, CategoryTheory.isCoseparator_iff_of_isLimit_fan, isSeparating_op_iff, IsCoseparating.mk_of_exists_limitsOfShape, CategoryTheory.IsCodetecting.isCoseparating, isCoseparating_bot_of_isThin, isCodetecting_iff_isCoseparating, IsCoseparating.mk_of_exists_mono
IsDetecting πŸ“–MathDef
15 mathmath: CategoryTheory.isDetecting_iff_isSeparating, isDetecting_op_iff, isDetecting_bot_of_isGroupoid, CategoryTheory.IsSeparating.isDetecting, isDetecting_unop_iff, PresheafOfModules.freeYoneda.isDetecting, IsSeparating.isDetecting, CategoryTheory.isCodetecting_op_iff, isCodetecting_unop_iff, CategoryTheory.isDetecting_op_iff, isCodetecting_op_iff, CategoryTheory.isDetecting_unop_iff, CategoryTheory.isDetecting_empty_of_groupoid, isDetecting_iff_isSeparating, CategoryTheory.isCodetecting_unop_iff
IsSeparating πŸ“–MathDef
26 mathmath: CategoryTheory.isDetecting_iff_isSeparating, CategoryTheory.isSeparating_iff_epi, CategoryTheory.isSeparating_unop_iff, CategoryTheory.isSeparator_coprod, isCoseparating_op_iff, CategoryTheory.Preadditive.isSeparating_iff, CategoryTheory.isSeparating_op_iff, CategoryTheory.isSeparator_sigma, PresheafOfModules.freeYoneda.isSeparating, isSeparating_unop_iff, CategoryTheory.isCoseparating_op_iff, IsDetecting.isSeparating, CategoryTheory.isSeparating_empty_of_thin, isSeparating_iff_epi, IsSeparating.mk_of_exists_epi, CategoryTheory.isSeparator_iff_of_isColimit_cofan, isStrongGenerator_iff, IsSeparating.mk_of_exists_colimitsOfShape, isSeparating_bot_of_isThin, isCoseparating_unop_iff, CategoryTheory.isCoseparating_unop_iff, CategoryTheory.IsDetecting.isSeparating, CategoryTheory.Ind.isSeparating_range_yoneda, IsStrongGenerator.isSeparating, isSeparating_op_iff, isDetecting_iff_isSeparating
coproductFrom πŸ“–CompOp
4 mathmath: CategoryTheory.isSeparating_iff_epi, isSeparating_iff_epi, IsStrongGenerator.extremalEpi_coproductFrom, IsSeparating.epi_coproductFrom
coproductFromFamily πŸ“–CompOp
2 mathmath: IsStrongGenerator.extremalEpi_coproductFrom, IsSeparating.epi_coproductFrom
productTo πŸ“–CompOp
3 mathmath: isCoseparating_iff_mono, CategoryTheory.isCoseparating_iff_mono, IsCoseparating.mono_productTo
productToFamily πŸ“–CompOp
1 mathmath: IsCoseparating.mono_productTo
ΞΉCoproductFrom πŸ“–CompOpβ€”
Ο€ProductTo πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCodetecting_bot_of_isGroupoid πŸ“–mathematicalβ€”IsCodetecting
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”CategoryTheory.IsGroupoid.all_isIso
isCodetecting_iff_isCoseparating πŸ“–mathematicalβ€”IsCodetecting
IsCoseparating
β€”IsCodetecting.isCoseparating
IsCoseparating.isCodetecting
isCodetecting_op_iff πŸ“–mathematicalβ€”IsCodetecting
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
IsDetecting
β€”CategoryTheory.isIso_op_iff
CategoryTheory.isIso_unop_iff
isCodetecting_unop_iff πŸ“–mathematicalβ€”IsCodetecting
unop
CategoryTheory.Category.toCategoryStruct
IsDetecting
Opposite
CategoryTheory.Category.opposite
β€”isDetecting_op_iff
isCoseparating_bot_of_isThin πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
IsCoseparating
Bot.bot
CategoryTheory.ObjectProperty
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”β€”
isCoseparating_iff_mono πŸ“–mathematicalCategoryTheory.Limits.HasProduct
CategoryTheory.StructuredArrow
FullSubcategory
FullSubcategory.category
ΞΉ
productToFamily
IsCoseparating
CategoryTheory.Mono
CategoryTheory.Limits.piObj
productTo
β€”IsCoseparating.mono_productTo
IsCoseparating.mk_of_exists_mono
FullSubcategory.property
isCoseparating_op_iff πŸ“–mathematicalβ€”IsCoseparating
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
IsSeparating
β€”β€”
isCoseparating_unop_iff πŸ“–mathematicalβ€”IsCoseparating
unop
CategoryTheory.Category.toCategoryStruct
IsSeparating
Opposite
CategoryTheory.Category.opposite
β€”isSeparating_op_iff
isDetecting_bot_of_isGroupoid πŸ“–mathematicalβ€”IsDetecting
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”CategoryTheory.IsGroupoid.all_isIso
isDetecting_iff_isSeparating πŸ“–mathematicalβ€”IsDetecting
IsSeparating
β€”IsDetecting.isSeparating
IsSeparating.isDetecting
isDetecting_op_iff πŸ“–mathematicalβ€”IsDetecting
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
IsCodetecting
β€”CategoryTheory.isIso_op_iff
CategoryTheory.isIso_unop_iff
isDetecting_unop_iff πŸ“–mathematicalβ€”IsDetecting
unop
CategoryTheory.Category.toCategoryStruct
IsCodetecting
Opposite
CategoryTheory.Category.opposite
β€”isCodetecting_op_iff
isGroupoid_of_isCodetecting_bot πŸ“–mathematicalIsCodetecting
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
CategoryTheory.IsGroupoidβ€”instIsEmptyFalse
isGroupoid_of_isDetecting_bot πŸ“–mathematicalIsDetecting
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
CategoryTheory.IsGroupoidβ€”instIsEmptyFalse
isSeparating_bot_of_isThin πŸ“–mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
IsSeparating
Bot.bot
CategoryTheory.ObjectProperty
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”β€”
isSeparating_iff_epi πŸ“–mathematicalCategoryTheory.Limits.HasCoproduct
CategoryTheory.CostructuredArrow
FullSubcategory
FullSubcategory.category
ΞΉ
coproductFromFamily
IsSeparating
CategoryTheory.Epi
CategoryTheory.Limits.sigmaObj
coproductFrom
β€”IsSeparating.epi_coproductFrom
IsSeparating.mk_of_exists_epi
FullSubcategory.property
isSeparating_op_iff πŸ“–mathematicalβ€”IsSeparating
Opposite
CategoryTheory.Category.opposite
op
CategoryTheory.Category.toCategoryStruct
IsCoseparating
β€”β€”
isSeparating_unop_iff πŸ“–mathematicalβ€”IsSeparating
unop
CategoryTheory.Category.toCategoryStruct
IsCoseparating
Opposite
CategoryTheory.Category.opposite
β€”isCoseparating_op_iff
isThin_of_isCoseparating_bot πŸ“–mathematicalIsCoseparating
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Quiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
β€”instIsEmptyFalse
isThin_of_isSeparating_bot πŸ“–mathematicalIsSeparating
Bot.bot
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Quiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
β€”instIsEmptyFalse

CategoryTheory.ObjectProperty.IsCodetecting

Theorems

NameKindAssumesProvesValidatesDepends On
isCoseparating πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCodetectingCategoryTheory.ObjectProperty.IsCoseparatingβ€”CategoryTheory.ObjectProperty.IsDetecting.isSeparating
CategoryTheory.Limits.hasEqualizers_opposite
isIso_iff_of_epi πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCodetectingCategoryTheory.IsIso
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.isIso_iff_coyoneda_map_bijective
existsUnique_of_exists_of_unique
CategoryTheory.cancel_epi
of_le πŸ“–β€”CategoryTheory.ObjectProperty.IsCodetecting
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”β€”

CategoryTheory.ObjectProperty.IsCoseparating

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.Epiβ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isCodetecting πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.ObjectProperty.IsCodetectingβ€”CategoryTheory.ObjectProperty.IsSeparating.isDetecting
CategoryTheory.balanced_opposite
mk_of_exists_limitsOfShape πŸ“–mathematicalCategoryTheory.ObjectProperty.limitsOfShapeCategoryTheory.ObjectProperty.IsCoseparatingβ€”CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.ObjectProperty.LimitOfShape.prop_diag_obj
mk_of_exists_mono πŸ“–mathematicalCategoryTheory.Mono
CategoryTheory.Limits.Cone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.ObjectProperty.IsCoseparatingβ€”CategoryTheory.cancel_mono
CategoryTheory.Limits.Fan.IsLimit.hom_ext
CategoryTheory.Category.assoc
mono_productTo πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.Mono
CategoryTheory.Limits.piObj
CategoryTheory.StructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ΞΉ
CategoryTheory.ObjectProperty.productToFamily
CategoryTheory.ObjectProperty.productTo
β€”CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_Ο€
CategoryTheory.eq_whisker
of_equivalence πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.ObjectProperty.strictMap
CategoryTheory.Equivalence.functor
β€”CategoryTheory.Functor.map_injective
CategoryTheory.Equivalence.faithful_inverse
Equiv.surjective
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.ObjectProperty.strictMap_obj
of_le πŸ“–β€”CategoryTheory.ObjectProperty.IsCoseparating
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”β€”

CategoryTheory.ObjectProperty.IsDetecting

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_iff_of_mono πŸ“–mathematicalCategoryTheory.ObjectProperty.IsDetectingCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Functor.map
β€”CategoryTheory.isIso_iff_yoneda_map_bijective
existsUnique_of_exists_of_unique
CategoryTheory.cancel_mono
isSeparating πŸ“–mathematicalCategoryTheory.ObjectProperty.IsDetectingCategoryTheory.ObjectProperty.IsSeparatingβ€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.equalizer.existsUnique
CategoryTheory.Limits.eq_of_epi_equalizer
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
of_le πŸ“–β€”CategoryTheory.ObjectProperty.IsDetecting
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”β€”

CategoryTheory.ObjectProperty.IsSeparating

Theorems

NameKindAssumesProvesValidatesDepends On
epi_coproductFrom πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.Epi
CategoryTheory.Limits.sigmaObj
CategoryTheory.CostructuredArrow
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.ObjectProperty.ΞΉ
CategoryTheory.ObjectProperty.coproductFromFamily
CategoryTheory.ObjectProperty.coproductFrom
β€”CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.whisker_eq
isDetecting πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.ObjectProperty.IsDetectingβ€”CategoryTheory.isIso_iff_mono_and_epi
CategoryTheory.Category.assoc
isSeparator_coproduct πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsSeparator
CategoryTheory.Limits.sigmaObj
β€”CategoryTheory.isSeparator_sigma
mk_of_exists_colimitsOfShape πŸ“–mathematicalCategoryTheory.ObjectProperty.colimitsOfShapeCategoryTheory.ObjectProperty.IsSeparatingβ€”CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.ObjectProperty.ColimitOfShape.prop_diag_obj
mk_of_exists_epi πŸ“–mathematicalCategoryTheory.Epi
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.ObjectProperty.IsSeparatingβ€”CategoryTheory.cancel_epi
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Category.assoc
mono_iff πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.Monoβ€”CategoryTheory.Category.assoc
of_equivalence πŸ“–mathematicalCategoryTheory.ObjectProperty.IsSeparatingCategoryTheory.ObjectProperty.strictMap
CategoryTheory.Equivalence.functor
β€”CategoryTheory.Functor.map_injective
CategoryTheory.Equivalence.faithful_inverse
Equiv.surjective
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Category.assoc
CategoryTheory.ObjectProperty.strictMap_obj
of_le πŸ“–β€”CategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
β€”β€”β€”

CategoryTheory.StructuredArrow

Theorems

NameKindAssumesProvesValidatesDepends On
isCoseparating_inverseImage_proj πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
β€”ext
isCoseparating_proj_preimage πŸ“–mathematicalCategoryTheory.ObjectProperty.IsCoseparatingCategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.ObjectProperty.inverseImage
proj
β€”isCoseparating_inverseImage_proj

CategoryTheory.Subobject

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_isDetecting πŸ“–β€”CategoryTheory.ObjectProperty.IsDetecting
Factors
β€”β€”inf_eq_of_isDetecting
inf_comm
eq_of_le_of_isDetecting πŸ“–β€”CategoryTheory.ObjectProperty.IsDetecting
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
Factors
β€”β€”factors_iff
CategoryTheory.cancel_mono
arrow_mono
CategoryTheory.Category.assoc
ofLE_arrow
factorThru_arrow
instMonoOfLE
le_antisymm
le_of_comm
inf_eq_of_isDetecting πŸ“–mathematicalCategoryTheory.ObjectProperty.IsDetecting
Factors
CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
β€”eq_of_le_of_isDetecting
inf_le_left
inf_factors

---

← Back to Index