Documentation Verification Report

HomologicalComplex

📁 Source: Mathlib/CategoryTheory/Generator/HomologicalComplex.lean

Statistics

MetricCount
DefinitionsseparatingFamily
1
TheoremsinstHasSeparator, isSeparating_separatingFamily, isSeparator_coproduct_separatingFamily
3
Total4

HomologicalComplex

Definitions

NameCategoryTheorems
separatingFamily 📖CompOp
2 mathmath: isSeparator_coproduct_separatingFamily, isSeparating_separatingFamily

Theorems

NameKindAssumesProvesValidatesDepends On
instHasSeparator 📖mathematicalCategoryTheory.HasSeparator
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategory
instHasColimit
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeEvalOfHasColimitsOfShape
isSeparator_coproduct_separatingFamily
CategoryTheory.isSeparator_separator
isSeparating_separatingFamily 📖mathematicalCategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
HomologicalComplex
instCategory
separatingFamily
hom_ext
Equiv.injective
CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp
CategoryTheory.ObjectProperty.ofObj_apply
isSeparator_coproduct_separatingFamily 📖mathematicalCategoryTheory.IsSeparatorHomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategory
CategoryTheory.Limits.sigmaObj
separatingFamily
instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShape
eval
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeEvalOfHasColimitsOfShape
CategoryTheory.isSeparator_of_isColimit_cofan
isSeparating_separatingFamily
instHasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape

---

← Back to Index