Documentation Verification Report

Preadditive

πŸ“ Source: Mathlib/CategoryTheory/Generator/Preadditive.lean

Statistics

MetricCount
Definitions0
TheoremsisCoseparating_iff, isCoseparator_iff, isSeparating_iff, isSeparator_iff, isCoseparator_iff_faithful_preadditiveYoneda, isCoseparator_iff_faithful_preadditiveYonedaObj, isSeparator_iff_faithful_preadditiveCoyoneda, isSeparator_iff_faithful_preadditiveCoyonedaObj
8
Total8

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isCoseparator_iff_faithful_preadditiveYoneda πŸ“–mathematicalβ€”IsCoseparator
Functor.Faithful
Opposite
Category.opposite
AddCommGrpCat
AddCommGrpCat.instCategory
Functor.obj
Functor
Functor.category
preadditiveYoneda
β€”isCoseparator_iff_faithful_yoneda_obj
whiskering_preadditiveYoneda
Functor.comp_obj
Functor.whiskeringRight_obj_obj
Functor.Faithful.of_comp
Functor.Faithful.comp
instFaithfulForget
isCoseparator_iff_faithful_preadditiveYonedaObj πŸ“–mathematicalβ€”IsCoseparator
Functor.Faithful
Opposite
Category.opposite
ModuleCat
End
Category.toCategoryStruct
Preadditive.instRingEnd
ModuleCat.moduleCategory
preadditiveYonedaObj
β€”isCoseparator_iff_faithful_preadditiveYoneda
preadditiveYoneda_obj
Functor.Faithful.of_comp
Functor.Faithful.comp
forgetβ‚‚_faithful
isSeparator_iff_faithful_preadditiveCoyoneda πŸ“–mathematicalβ€”IsSeparator
Functor.Faithful
AddCommGrpCat
AddCommGrpCat.instCategory
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
preadditiveCoyoneda
Opposite.op
β€”isSeparator_iff_faithful_coyoneda_obj
whiskering_preadditiveCoyoneda
Functor.comp_obj
Functor.whiskeringRight_obj_obj
Functor.Faithful.of_comp
Functor.Faithful.comp
instFaithfulForget
isSeparator_iff_faithful_preadditiveCoyonedaObj πŸ“–mathematicalβ€”IsSeparator
Functor.Faithful
ModuleCat
MulOpposite
End
Category.toCategoryStruct
MulOpposite.instRing
Preadditive.instRingEnd
ModuleCat.moduleCategory
preadditiveCoyonedaObj
β€”isSeparator_iff_faithful_preadditiveCoyoneda
preadditiveCoyoneda_obj
Functor.Faithful.of_comp
Functor.Faithful.comp
forgetβ‚‚_faithful

CategoryTheory.Preadditive

Theorems

NameKindAssumesProvesValidatesDepends On
isCoseparating_iff πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsCoseparating
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
preadditiveHasZeroMorphisms
β€”CategoryTheory.Limits.zero_comp
sub_eq_zero
sub_comp
isCoseparator_iff πŸ“–mathematicalβ€”CategoryTheory.IsCoseparator
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
preadditiveHasZeroMorphisms
β€”CategoryTheory.IsCoseparator.def
CategoryTheory.Limits.zero_comp
CategoryTheory.isCoseparator_def
sub_eq_zero
sub_comp
isSeparating_iff πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsSeparating
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
preadditiveHasZeroMorphisms
β€”CategoryTheory.Limits.comp_zero
sub_eq_zero
comp_sub
isSeparator_iff πŸ“–mathematicalβ€”CategoryTheory.IsSeparator
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
preadditiveHasZeroMorphisms
β€”CategoryTheory.IsSeparator.def
CategoryTheory.Limits.comp_zero
CategoryTheory.isSeparator_def
sub_eq_zero
comp_sub

---

← Back to Index