Documentation Verification Report

Presheaf

📁 Source: Mathlib/CategoryTheory/Generator/Presheaf.lean

Statistics

MetricCount
DefinitionsfreeYoneda, freeYonedaHomEquiv
2
TheoremsfreeYonedaHomEquiv_comp, freeYonedaHomEquiv_comp_assoc, freeYonedaHomEquiv_symm_comp, freeYonedaHomEquiv_symm_comp_assoc, freeYoneda_map, freeYoneda_obj, hasSeparator, isSeparating, isSeparator
9
Total11

CategoryTheory.Presheaf

Definitions

NameCategoryTheorems
freeYoneda 📖CompOp
10 mathmath: instIsCardinalPresentableFunctorOppositeFreeYonedaOfHasColimitsOfSize, isSeparating, freeYonedaHomEquiv_comp, freeYoneda_map, freeYonedaHomEquiv_symm_comp, isSeparator, isStrongGenerator, freeYonedaHomEquiv_comp_assoc, freeYonedaHomEquiv_symm_comp_assoc, freeYoneda_obj
freeYonedaHomEquiv 📖CompOp
4 mathmath: freeYonedaHomEquiv_comp, freeYonedaHomEquiv_symm_comp, freeYonedaHomEquiv_comp_assoc, freeYonedaHomEquiv_symm_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
freeYonedaHomEquiv_comp 📖mathematicalCategoryTheory.Limits.HasCoproductsDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
freeYoneda
CategoryTheory.Functor.obj
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
freeYonedaHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
freeYonedaHomEquiv_comp_assoc 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
freeYoneda
EquivLike.toFunLike
Equiv.instEquivLike
freeYonedaHomEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
freeYonedaHomEquiv_comp
freeYonedaHomEquiv_symm_comp 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
freeYoneda
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.obj
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
freeYonedaHomEquiv
CategoryTheory.NatTrans.app
Equiv.injective
freeYonedaHomEquiv_comp
Equiv.apply_symm_apply
freeYonedaHomEquiv_symm_comp_assoc 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
freeYoneda
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.obj
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
freeYonedaHomEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
freeYonedaHomEquiv_symm_comp
freeYoneda_map 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
freeYoneda
CategoryTheory.Limits.Sigma.map'
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
freeYoneda_obj 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
freeYoneda
CategoryTheory.Limits.sigmaObj
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
hasSeparator 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.HasSeparator
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
isSeparator
CategoryTheory.isSeparator_separator
isSeparating 📖mathematicalCategoryTheory.Limits.HasCoproducts
CategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
freeYoneda
CategoryTheory.NatTrans.ext'
Equiv.injective
freeYonedaHomEquiv_symm_comp
CategoryTheory.ObjectProperty.ofObj_apply
isSeparator 📖mathematicalCategoryTheory.Limits.HasCoproducts
CategoryTheory.ObjectProperty.IsSeparating
CategoryTheory.ObjectProperty.ofObj
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsSeparator
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Limits.sigmaObj
freeYoneda
CategoryTheory.ObjectProperty.IsSeparating.isSeparator_coproduct
isSeparating

---

← Back to Index