Documentation Verification Report

GlueData

📁 Source: Mathlib/CategoryTheory/GlueData.lean

Statistics

MetricCount
DefinitionsGlueData, GlueData, GlueData, GlueData, GlueData, GlueData', J, U, V, f, f', t, t', t'', J, U, V, diagram, diagramIso, f, glued, gluedIso, mapGlueData, ofGlueData', sigmaOpens, t, t', vPullbackCone, vPullbackConeIsLimitOfMap, ι, π, GlueData
32
Theoremscocycle, cocycle_assoc, f_hasPullback, f_mono, t_fac, t_inv, t_inv_assoc, cocycle, cocycle_assoc, diagramIso_app_left, diagramIso_app_right, diagramIso_hom_app_left, diagramIso_hom_app_right, diagramIso_inv_app_left, diagramIso_inv_app_right, diagram_fst, diagram_left, diagram_right, diagram_snd, f_hasPullback, f_id, f_mono, glue_condition, glue_condition_apply, hasColimit_mapGlueData_diagram, hasColimit_multispan_comp, instHasPullbackMapF, mapGlueData_J, mapGlueData_U, mapGlueData_V, mapGlueData_f, mapGlueData_t, mapGlueData_t', t'_comp_eq_pullbackSymmetry, t'_comp_eq_pullbackSymmetry_assoc, t'_iij, t'_iji, t'_inv, t'_isIso, t'_jii, t_fac, t_fac_assoc, t_id, t_inv, t_inv_apply, t_inv_assoc, t_isIso, types_ι_jointly_surjective, types_π_surjective, ι_gluedIso_hom, ι_gluedIso_hom_assoc, ι_gluedIso_inv, ι_gluedIso_inv_assoc, ι_jointly_surjective, π_epi, instHasPullbackF', instIsIsoF', instMonoF'
58
Total90

AlgebraicGeometry.LocallyRingedSpace

Definitions

NameCategoryTheorems
GlueData 📖CompData

AlgebraicGeometry.PresheafedSpace

Definitions

NameCategoryTheorems
GlueData 📖CompData

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
GlueData 📖CompData

AlgebraicGeometry.SheafedSpace

Definitions

NameCategoryTheorems
GlueData 📖CompData

CategoryTheory

Definitions

NameCategoryTheorems
GlueData 📖CompData
GlueData' 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
instHasPullbackF' 📖mathematicalLimits.HasPullback
GlueData'.J
GlueData'.U
GlueData'.V
GlueData'.f'
Limits.hasPullback_of_left_iso
instIsIsoEqToHom
Limits.hasPullback_of_right_iso
Category.id_comp
GlueData'.f_hasPullback
instIsIsoF' 📖mathematicalIsIso
GlueData'.J
GlueData'.U
GlueData'.V
GlueData'.f'
instIsIsoEqToHom
instMonoF' 📖mathematicalMono
GlueData'.J
GlueData'.U
GlueData'.V
GlueData'.f'
mono_of_strongMono
strongMono_of_isIso
instIsIsoEqToHom
mono_comp
GlueData'.f_mono

CategoryTheory.GlueData

Definitions

NameCategoryTheorems
J 📖CompOp
105 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, TopCat.GlueData.preimage_image_eq_image, TopCat.GlueData.π_surjective, TopCat.GlueData.open_image_open, TopCat.GlueData.ι_fromOpenSubsetsGlue, types_π_surjective, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isOpenImmersion, AlgebraicGeometry.PresheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.isOpen_iff, TopCat.GlueData.ι_fromOpenSubsetsGlue_apply, t'_iij, AlgebraicGeometry.SheafedSpace.GlueData.f_open, t_inv, TopCat.GlueData.rel_equiv, AlgebraicGeometry.Scheme.GlueData.instHasMulticoequalizerDiagram, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFSheafedSpaceToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.GlueData.glue_condition, AlgebraicGeometry.Scheme.GlueData.f_open, f_id, t'_iji, AlgebraicGeometry.Scheme.GlueData.instPreservesColimitTopCatWalkingMultispanProdJMultispanDiagramForgetToTop, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.Scheme.Pullback.gluing_J, AlgebraicGeometry.Scheme.GlueData.instPreservesColimitWalkingMultispanProdJMultispanDiagramForget, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι_assoc, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionιLocallyRingedSpaceToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, TopCat.GlueData.f_open, AlgebraicGeometry.Scheme.Cover.gluedCover_J, t_fac, t_inv_apply, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', TopCat.GlueData.range_fromOpenSubsetsGlue, AlgebraicGeometry.Scheme.GlueData.ι_eq_iff, t'_comp_eq_pullbackSymmetry_assoc, diagram_left, glue_condition, diagram_snd, TopCat.GlueData.fromOpenSubsetsGlue_isOpenEmbedding, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, t_fac_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.PresheafedSpace.GlueData.f_open, AlgebraicGeometry.PresheafedSpace.GlueData.componentwise_diagram_π_isIso, AlgebraicGeometry.SheafedSpace.GlueData.ι_isoPresheafedSpace_inv, TopCat.GlueData.fromOpenSubsetsGlue_injective, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, t'_inv, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, t_inv_assoc, t'_jii, TopCat.GlueData.ι_isOpenEmbedding, cocycle_assoc, TopCat.GlueData.ofOpenSubsets_toGlueData_J, π_epi, AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.Scheme.Pullback.gluing_ι, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, TopCat.GlueData.preimage_range, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, TopCat.GlueData.ι_mono, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, diagram_fst, t_isIso, AlgebraicGeometry.SheafedSpace.GlueData.ιIsOpenImmersion, f_mono, t_id, TopCat.GlueData.image_inter, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFPresheafedSpaceToPresheafedSpaceGlueDataToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι, TopCat.GlueData.fromOpenSubsetsGlue_isOpenMap, AlgebraicGeometry.Scheme.GlueData.ι_isoLocallyRingedSpace_inv, AlgebraicGeometry.PresheafedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.GlueData.glue_condition_assoc, TopCat.GlueData.ι_jointly_surjective, hasColimit_multispan_comp, AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₀, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_J, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, AlgebraicGeometry.Scheme.GlueData.openCover_I₀, TopCat.GlueData.ι_eq_iff_rel, cocycle, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_π, t'_isIso, diagram_right, AlgebraicGeometry.LocallyRingedSpace.GlueData.f_open, types_ι_jointly_surjective, AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y, t'_comp_eq_pullbackSymmetry, TopCat.GlueData.ι_injective, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_eq_id, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', f_hasPullback, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionFLocallyRingedSpaceToLocallyRingedSpaceGlueData, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, AlgebraicGeometry.SheafedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
U 📖CompOp
89 mathmath: TopCat.GlueData.preimage_image_eq_image, TopCat.GlueData.π_surjective, TopCat.GlueData.open_image_open, TopCat.GlueData.ι_fromOpenSubsetsGlue, types_π_surjective, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isOpenImmersion, AlgebraicGeometry.PresheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.ofOpenSubsets_toGlueData_U, TopCat.GlueData.isOpen_iff, AlgebraicGeometry.Scheme.Cover.gluedCover_U, TopCat.GlueData.ι_fromOpenSubsetsGlue_apply, t'_iij, AlgebraicGeometry.SheafedSpace.GlueData.f_open, TopCat.GlueData.rel_equiv, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFSheafedSpaceToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.Cover.ι_fromGlued_assoc, AlgebraicGeometry.Scheme.GlueData.glue_condition, AlgebraicGeometry.Scheme.GlueData.f_open, f_id, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst_assoc, AlgebraicGeometry.Scheme.GlueData.isOpen_iff, t'_iji, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_fst, AlgebraicGeometry.Scheme.GlueData.ι_isOpenImmersion, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionιLocallyRingedSpaceToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, TopCat.GlueData.f_open, t_fac, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.GlueData.ι_eq_iff, t'_comp_eq_pullbackSymmetry_assoc, glue_condition, AlgebraicGeometry.Scheme.GlueData.openCover_X, diagram_snd, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.Pullback.gluing_U, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, t_fac_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.PresheafedSpace.GlueData.f_open, AlgebraicGeometry.SheafedSpace.GlueData.ι_isoPresheafedSpace_inv, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, t'_inv, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, t'_jii, TopCat.GlueData.ι_isOpenEmbedding, cocycle_assoc, π_epi, AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, TopCat.GlueData.preimage_range, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, TopCat.GlueData.ι_mono, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, AlgebraicGeometry.SheafedSpace.GlueData.ιIsOpenImmersion, f_mono, TopCat.GlueData.image_inter, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFPresheafedSpaceToPresheafedSpaceGlueDataToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.Scheme.GlueData.oneHypercover_X, AlgebraicGeometry.Scheme.GlueData.ι_isoLocallyRingedSpace_inv, AlgebraicGeometry.PresheafedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.GlueData.glue_condition_assoc, TopCat.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd_assoc, AlgebraicGeometry.Scheme.Pullback.pullbackFstιToV_snd, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, TopCat.GlueData.ι_eq_iff_rel, cocycle, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_π, t'_isIso, diagram_right, AlgebraicGeometry.LocallyRingedSpace.GlueData.f_open, AlgebraicGeometry.Scheme.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_U, t'_comp_eq_pullbackSymmetry, TopCat.GlueData.ι_injective, AlgebraicGeometry.PresheafedSpace.GlueData.π_ιInvApp_eq_id, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', f_hasPullback, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionFLocallyRingedSpaceToLocallyRingedSpaceGlueData, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, AlgebraicGeometry.SheafedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.Scheme.Cover.ι_fromGlued
V 📖CompOp
58 mathmath: AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc, TopCat.GlueData.preimage_image_eq_image, t'_iij, AlgebraicGeometry.SheafedSpace.GlueData.f_open, t_inv, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFSheafedSpaceToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.Cover.gluedCover_V, AlgebraicGeometry.Scheme.GlueData.glue_condition, AlgebraicGeometry.Scheme.GlueData.f_open, f_id, t'_iji, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, TopCat.GlueData.f_open, t_fac, t_inv_apply, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', t'_comp_eq_pullbackSymmetry_assoc, diagram_left, glue_condition, diagram_snd, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, t_fac_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.f_open, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, t'_inv, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_V, t_inv_assoc, t'_jii, cocycle_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, TopCat.GlueData.preimage_range, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, t_isIso, TopCat.GlueData.ofOpenSubsets_toGlueData_V, f_mono, t_id, TopCat.GlueData.image_inter, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFPresheafedSpaceToPresheafedSpaceGlueDataToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.Scheme.GlueData.glue_condition_assoc, cocycle, t'_isIso, AlgebraicGeometry.LocallyRingedSpace.GlueData.f_open, AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y, t'_comp_eq_pullbackSymmetry, AlgebraicGeometry.Scheme.Pullback.gluing_V, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', f_hasPullback, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionFLocallyRingedSpaceToLocallyRingedSpaceGlueData, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst
diagram 📖CompOp
56 mathmath: diagramIso_app_right, TopCat.GlueData.preimage_image_eq_image, TopCat.GlueData.π_surjective, TopCat.GlueData.open_image_open, TopCat.GlueData.ι_fromOpenSubsetsGlue, types_π_surjective, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isOpenImmersion, AlgebraicGeometry.PresheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.isOpen_iff, TopCat.GlueData.ι_fromOpenSubsetsGlue_apply, AlgebraicGeometry.Scheme.GlueData.instHasMulticoequalizerDiagram, AlgebraicGeometry.Scheme.GlueData.instPreservesColimitTopCatWalkingMultispanProdJMultispanDiagramForgetToTop, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, diagramIso_app_left, AlgebraicGeometry.Scheme.GlueData.instPreservesColimitWalkingMultispanProdJMultispanDiagramForget, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι_assoc, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionιLocallyRingedSpaceToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, diagramIso_inv_app_left, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', TopCat.GlueData.range_fromOpenSubsetsGlue, diagramIso_inv_app_right, diagram_left, diagram_snd, TopCat.GlueData.fromOpenSubsetsGlue_isOpenEmbedding, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.SheafedSpace.GlueData.ι_isoPresheafedSpace_inv, TopCat.GlueData.fromOpenSubsetsGlue_injective, TopCat.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.Scheme.Pullback.gluing_ι, TopCat.GlueData.preimage_range, TopCat.GlueData.ι_mono, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, diagram_fst, AlgebraicGeometry.SheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.image_inter, AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ι, TopCat.GlueData.fromOpenSubsetsGlue_isOpenMap, AlgebraicGeometry.Scheme.GlueData.ι_isoLocallyRingedSpace_inv, AlgebraicGeometry.PresheafedSpace.GlueData.ι_jointly_surjective, TopCat.GlueData.ι_jointly_surjective, hasColimit_multispan_comp, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, TopCat.GlueData.ι_eq_iff_rel, diagram_right, types_ι_jointly_surjective, hasColimit_mapGlueData_diagram, TopCat.GlueData.ι_injective, diagramIso_hom_app_right, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.SheafedSpace.GlueData.ι_jointly_surjective, diagramIso_hom_app_left
diagramIso 📖CompOp
6 mathmath: diagramIso_app_right, diagramIso_app_left, diagramIso_inv_app_left, diagramIso_inv_app_right, diagramIso_hom_app_right, diagramIso_hom_app_left
f 📖CompOp
49 mathmath: TopCat.GlueData.preimage_image_eq_image, t'_iij, AlgebraicGeometry.SheafedSpace.GlueData.f_open, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFSheafedSpaceToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.pullback_base, AlgebraicGeometry.Scheme.GlueData.glue_condition, AlgebraicGeometry.Scheme.GlueData.f_open, f_id, t'_iji, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.Scheme.Pullback.gluing_f, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, TopCat.GlueData.f_open, t_fac, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', t'_comp_eq_pullbackSymmetry_assoc, glue_condition, diagram_snd, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app_assoc, t_fac_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.f_open, AlgebraicGeometry.PresheafedSpace.GlueData.f_invApp_f_app, t'_inv, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, t'_jii, cocycle_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_f, AlgebraicGeometry.Scheme.Cover.gluedCover_f, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, TopCat.GlueData.preimage_range, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, diagram_fst, f_mono, TopCat.GlueData.image_inter, TopCat.GlueData.ofOpenSubsets_toGlueData_f, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionCommRingCatFPresheafedSpaceToPresheafedSpaceGlueDataToSheafedSpaceGlueDataToLocallyRingedSpaceGlueData, AlgebraicGeometry.Scheme.GlueData.glue_condition_assoc, cocycle, t'_isIso, AlgebraicGeometry.LocallyRingedSpace.GlueData.f_open, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₁, t'_comp_eq_pullbackSymmetry, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', f_hasPullback, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionFLocallyRingedSpaceToLocallyRingedSpaceGlueData, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace
glued 📖CompOp
47 mathmath: TopCat.GlueData.preimage_image_eq_image, TopCat.GlueData.π_surjective, TopCat.GlueData.open_image_open, TopCat.GlueData.ι_fromOpenSubsetsGlue, types_π_surjective, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isOpenImmersion, AlgebraicGeometry.PresheafedSpace.GlueData.ιIsOpenImmersion, ι_gluedIso_inv, TopCat.GlueData.isOpen_iff, TopCat.GlueData.ι_fromOpenSubsetsGlue_apply, ι_gluedIso_inv_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv, AlgebraicGeometry.Scheme.GlueData.ι_isOpenImmersion, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionιLocallyRingedSpaceToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', TopCat.GlueData.range_fromOpenSubsetsGlue, AlgebraicGeometry.Scheme.GlueData.ι_eq_iff, glue_condition, TopCat.GlueData.fromOpenSubsetsGlue_isOpenEmbedding, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.SheafedSpace.GlueData.ι_isoPresheafedSpace_inv, TopCat.GlueData.fromOpenSubsetsGlue_injective, TopCat.GlueData.ι_isOpenEmbedding, π_epi, AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, TopCat.GlueData.preimage_range, TopCat.GlueData.ι_mono, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, AlgebraicGeometry.SheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.image_inter, TopCat.GlueData.fromOpenSubsetsGlue_isOpenMap, AlgebraicGeometry.Scheme.GlueData.ι_isoLocallyRingedSpace_inv, ι_gluedIso_hom, AlgebraicGeometry.PresheafedSpace.GlueData.ι_jointly_surjective, TopCat.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, TopCat.GlueData.ι_eq_iff_rel, TopCat.GlueData.ι_injective, ι_gluedIso_hom_assoc, ι_jointly_surjective, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.SheafedSpace.GlueData.ι_jointly_surjective
gluedIso 📖CompOp
4 mathmath: ι_gluedIso_inv, ι_gluedIso_inv_assoc, ι_gluedIso_hom, ι_gluedIso_hom_assoc
mapGlueData 📖CompOp
18 mathmath: diagramIso_app_right, ι_gluedIso_inv, ι_gluedIso_inv_assoc, diagramIso_app_left, mapGlueData_J, mapGlueData_U, diagramIso_inv_app_left, diagramIso_inv_app_right, mapGlueData_t, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, mapGlueData_f, ι_gluedIso_hom, hasColimit_mapGlueData_diagram, ι_gluedIso_hom_assoc, mapGlueData_t', diagramIso_hom_app_right, diagramIso_hom_app_left, mapGlueData_V
ofGlueData' 📖CompOp
sigmaOpens 📖CompOp
3 mathmath: TopCat.GlueData.π_surjective, types_π_surjective, π_epi
t 📖CompOp
29 mathmath: TopCat.GlueData.preimage_image_eq_image, AlgebraicGeometry.Scheme.Cover.gluedCover_t, TopCat.GlueData.ofOpenSubsets_toGlueData_t, t_inv, AlgebraicGeometry.Scheme.Pullback.gluing_t, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, AlgebraicGeometry.Scheme.GlueData.glue_condition, t'_iji, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, t_fac, t_inv_apply, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', glue_condition, diagram_snd, t_fac_assoc, mapGlueData_t, AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂, t_inv_assoc, t'_jii, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, t_isIso, t_id, AlgebraicGeometry.Scheme.GlueData.glue_condition_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', TopCat.GlueData.preimage_image_eq_image'
t' 📖CompOp
18 mathmath: t'_iij, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, t'_iji, t_fac, t'_comp_eq_pullbackSymmetry_assoc, t_fac_assoc, t'_inv, t'_jii, cocycle_assoc, AlgebraicGeometry.Scheme.LocalRepresentability.glueData_t', AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, cocycle, t'_isIso, AlgebraicGeometry.Scheme.Pullback.gluing_t', t'_comp_eq_pullbackSymmetry, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app', mapGlueData_t', AlgebraicGeometry.Scheme.Cover.gluedCover_t'
vPullbackCone 📖CompOp
vPullbackConeIsLimitOfMap 📖CompOp
ι 📖CompOp
41 mathmath: TopCat.GlueData.preimage_image_eq_image, TopCat.GlueData.open_image_open, TopCat.GlueData.ι_fromOpenSubsetsGlue, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isOpenImmersion, AlgebraicGeometry.PresheafedSpace.GlueData.ιIsOpenImmersion, ι_gluedIso_inv, TopCat.GlueData.isOpen_iff, TopCat.GlueData.ι_fromOpenSubsetsGlue_apply, ι_gluedIso_inv_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.ι_image_preimage_eq, glue_condition_apply, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv, AlgebraicGeometry.Scheme.GlueData.ι_isOpenImmersion, AlgebraicGeometry.Scheme.GlueData.instIsOpenImmersionιLocallyRingedSpaceToLocallyRingedSpaceGlueData, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app', AlgebraicGeometry.Scheme.GlueData.ι_eq_iff, glue_condition, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.SheafedSpace.GlueData.ι_isoPresheafedSpace_inv, TopCat.GlueData.ι_isOpenEmbedding, AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, TopCat.GlueData.preimage_range, TopCat.GlueData.ι_mono, AlgebraicGeometry.LocallyRingedSpace.GlueData.ι_isoSheafedSpace_inv_assoc, AlgebraicGeometry.SheafedSpace.GlueData.ιIsOpenImmersion, TopCat.GlueData.image_inter, AlgebraicGeometry.Scheme.GlueData.ι_isoLocallyRingedSpace_inv, ι_gluedIso_hom, AlgebraicGeometry.PresheafedSpace.GlueData.ι_jointly_surjective, TopCat.GlueData.ι_jointly_surjective, AlgebraicGeometry.PresheafedSpace.GlueData.ιInvApp_π, TopCat.GlueData.ι_eq_iff_rel, types_ι_jointly_surjective, TopCat.GlueData.ι_injective, ι_gluedIso_hom_assoc, ι_jointly_surjective, TopCat.GlueData.preimage_image_eq_image', AlgebraicGeometry.SheafedSpace.GlueData.ι_jointly_surjective
π 📖CompOp
3 mathmath: TopCat.GlueData.π_surjective, types_π_surjective, π_epi

Theorems

NameKindAssumesProvesValidatesDepends On
cocycle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
CategoryTheory.CategoryStruct.id
cocycle_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
f_hasPullback
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
cocycle
diagramIso_app_left 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.Iso.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MultispanIndex.multispan
diagram
mapGlueData
diagramIso
CategoryTheory.Limits.WalkingMultispan.left
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
diagramIso_app_right 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.Iso.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MultispanIndex.multispan
diagram
mapGlueData
diagramIso
CategoryTheory.Limits.WalkingMultispan.right
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
diagramIso_hom_app_left 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MultispanIndex.multispan
diagram
mapGlueData
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIso
CategoryTheory.Limits.WalkingMultispan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diagramIso_hom_app_right 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MultispanIndex.multispan
diagram
mapGlueData
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIso
CategoryTheory.Limits.WalkingMultispan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diagramIso_inv_app_left 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
mapGlueData
diagram
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIso
CategoryTheory.Limits.WalkingMultispan.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diagramIso_inv_app_right 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
mapGlueData
diagram
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
diagramIso
CategoryTheory.Limits.WalkingMultispan.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
diagram_fst 📖mathematicalCategoryTheory.Limits.MultispanIndex.fst
CategoryTheory.Limits.MultispanShape.prod
J
diagram
f
diagram_left 📖mathematicalCategoryTheory.Limits.MultispanIndex.left
CategoryTheory.Limits.MultispanShape.prod
J
diagram
V
diagram_right 📖mathematicalCategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.prod
J
diagram
U
diagram_snd 📖mathematicalCategoryTheory.Limits.MultispanIndex.snd
CategoryTheory.Limits.MultispanShape.prod
J
diagram
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
U
t
f
f_hasPullback 📖mathematicalCategoryTheory.Limits.HasPullback
V
J
U
f
f_id 📖mathematicalCategoryTheory.IsIso
V
J
U
f
f_mono 📖mathematicalCategoryTheory.Mono
V
J
U
f
glue_condition 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
J
glued
t
U
f
ι
CategoryTheory.Category.assoc
CategoryTheory.Limits.Multicoequalizer.condition
glue_condition_apply 📖mathematicalDFunLike.coe
U
glued
CategoryTheory.ConcreteCategory.hom
ι
V
J
f
t
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
glue_condition
hasColimit_mapGlueData_diagram 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.Limits.HasMulticoequalizer
CategoryTheory.Limits.MultispanShape.prod
mapGlueData
diagram
CategoryTheory.Limits.hasColimit_of_iso
hasColimit_multispan_comp
hasColimit_multispan_comp 📖mathematicalCategoryTheory.Limits.HasColimit
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
J
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.MultispanIndex.multispan
diagram
instHasPullbackMapF 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.Limits.HasPullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
f_hasPullback
mapGlueData_J 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
mapGlueData
mapGlueData_U 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
mapGlueData
CategoryTheory.Functor.obj
mapGlueData_V 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
mapGlueData
CategoryTheory.Functor.obj
mapGlueData_f 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
mapGlueData
CategoryTheory.Functor.map
mapGlueData_t 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
t
mapGlueData
CategoryTheory.Functor.map
mapGlueData_t' 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
t'
mapGlueData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
f_hasPullback
CategoryTheory.Iso.inv
instHasPullbackMapF
CategoryTheory.Limits.PreservesPullback.iso
CategoryTheory.Iso.hom
t'_comp_eq_pullbackSymmetry 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Iso.hom
CategoryTheory.Limits.pullbackSymmetry
f_hasPullback
t'_isIso
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.IsIso.eq_inv_of_hom_inv_id
cocycle
CategoryTheory.cancel_mono
CategoryTheory.Limits.pullback.fst_of_mono
f_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
t_fac
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst_assoc
t_fac_assoc
t_inv
CategoryTheory.Category.comp_id
t'_comp_eq_pullbackSymmetry_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Iso.hom
CategoryTheory.Limits.pullbackSymmetry
f_hasPullback
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
t'_comp_eq_pullbackSymmetry
t'_iij 📖mathematicalt'
CategoryTheory.Iso.hom
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Limits.pullbackSymmetry
f_hasPullback
t_fac
f_id
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.Limits.pullback.condition
CategoryTheory.Category.comp_id
t_id
CategoryTheory.Mono.right_cancellation
CategoryTheory.Limits.pullback.fst_of_mono
f_mono
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
t'_iji 📖mathematicalt'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
CategoryTheory.Limits.pullback.fst
t
CategoryTheory.inv
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.isIso_snd_of_mono
f_mono
f_hasPullback
CategoryTheory.Limits.isIso_snd_of_mono
f_mono
CategoryTheory.Category.assoc
t_fac
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
t'_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
CategoryTheory.Limits.hasPullback_symmetry
t'
CategoryTheory.Iso.hom
CategoryTheory.Limits.pullbackSymmetry
CategoryTheory.CategoryStruct.id
f_hasPullback
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.cancel_mono
CategoryTheory.Limits.pullback.fst_of_mono
f_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
t_fac
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst_assoc
t_fac_assoc
t_inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
t'_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
f_hasPullback
cocycle
CategoryTheory.Category.assoc
t'_jii 📖mathematicalt'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
CategoryTheory.Limits.pullback.fst
t
CategoryTheory.inv
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback_snd_iso_of_left_iso
f_id
f_hasPullback
CategoryTheory.Limits.pullback_snd_iso_of_left_iso
f_id
CategoryTheory.Category.assoc
t_fac
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
t_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback.fst
t
t_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
J
U
f
f_hasPullback
t'
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback.fst
t
f_hasPullback
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
t_fac
t_id 📖mathematicalt
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
J
t_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
J
t
CategoryTheory.CategoryStruct.id
f_hasPullback
CategoryTheory.Limits.hasPullback_symmetry
CategoryTheory.Limits.pullback_fst_iso_of_right_iso
f_id
CategoryTheory.Limits.pullbackSymmetry_hom_comp_fst
cocycle
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.IsIso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.IsIso.eq_inv_comp
CategoryTheory.Limits.isIso_snd_of_mono
f_mono
CategoryTheory.Limits.has_kernel_pair_of_mono
CategoryTheory.Limits.pullback_snd_iso_of_left_iso
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Limits.fst_eq_snd_of_mono_eq
t'_iji
t'_jii
t'_iij
t_inv_apply 📖mathematicalDFunLike.coe
V
J
CategoryTheory.ConcreteCategory.hom
t
CategoryTheory.comp_apply
CategoryTheory.id_apply
Mathlib.Tactic.Elementwise.hom_elementwise
t_inv
t_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
J
t
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
t_inv
t_isIso 📖mathematicalCategoryTheory.IsIso
V
J
t
t_inv
types_ι_jointly_surjective 📖mathematicalι
CategoryTheory.types
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
J
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MultispanShape.L
CategoryTheory.Limits.MultispanShape.R
CategoryTheory.Limits.MultispanIndex.multispan
diagram
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
UnivLE.small
UnivLE.self
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.Multicoequalizer.ι_sigmaπ
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.Types.hasColimitsOfSize
types_π_surjective
CategoryTheory.ConcreteCategory.congr_hom
CategoryTheory.Iso.hom_inv_id
types_π_surjective 📖mathematicalsigmaOpens
CategoryTheory.types
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
J
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.Discrete.functor
U
glued
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.prod
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
UnivLE.small
CategoryTheory.Limits.MultispanShape.L
CategoryTheory.Limits.MultispanShape.R
CategoryTheory.Limits.MultispanIndex.multispan
diagram
π
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
UnivLE.small
CategoryTheory.epi_iff_surjective
π_epi
ι_gluedIso_hom 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
glued
mapGlueData
hasColimit_mapGlueData_diagram
CategoryTheory.Functor.map
ι
CategoryTheory.Iso.hom
gluedIso
hasColimit_mapGlueData_diagram
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
CategoryTheory.ι_preservesColimitIso_hom_assoc
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom
CategoryTheory.Category.id_comp
ι_gluedIso_hom_assoc 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
glued
CategoryTheory.Functor.map
ι
mapGlueData
hasColimit_mapGlueData_diagram
CategoryTheory.Iso.hom
gluedIso
hasColimit_mapGlueData_diagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_gluedIso_hom
ι_gluedIso_inv 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapGlueData
glued
hasColimit_mapGlueData_diagram
CategoryTheory.Functor.obj
ι
CategoryTheory.Iso.inv
gluedIso
CategoryTheory.Functor.map
hasColimit_mapGlueData_diagram
CategoryTheory.Iso.comp_inv_eq
ι_gluedIso_hom
ι_gluedIso_inv_assoc 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapGlueData
glued
hasColimit_mapGlueData_diagram
ι
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
gluedIso
CategoryTheory.Functor.map
hasColimit_mapGlueData_diagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_gluedIso_inv
ι_jointly_surjective 📖mathematicalCategoryTheory.Limits.PreservesLimit
CategoryTheory.types
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
V
J
U
f
CategoryTheory.Functor.map
glued
ι
hasColimit_mapGlueData_diagram
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.Limits.WalkingMultispan.instSmallOfLOfR
UnivLE.small
UnivLE.self
types_ι_jointly_surjective
ι_gluedIso_inv
CategoryTheory.Iso.hom_inv_id
π_epi 📖mathematicalCategoryTheory.Epi
sigmaOpens
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
J
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Discrete.functor
U
glued
π
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.Multicoequalizer.instEpiSigmaπ

CategoryTheory.GlueData'

Definitions

NameCategoryTheorems
J 📖CompOp
8 mathmath: CategoryTheory.instMonoF', cocycle_assoc, cocycle, CategoryTheory.instHasPullbackF', t_inv, t_inv_assoc, t_fac, CategoryTheory.instIsIsoF'
U 📖CompOp
8 mathmath: CategoryTheory.instMonoF', cocycle_assoc, cocycle, CategoryTheory.instHasPullbackF', f_mono, t_fac, f_hasPullback, CategoryTheory.instIsIsoF'
V 📖CompOp
10 mathmath: CategoryTheory.instMonoF', cocycle_assoc, cocycle, CategoryTheory.instHasPullbackF', t_inv, t_inv_assoc, f_mono, t_fac, f_hasPullback, CategoryTheory.instIsIsoF'
f 📖CompOp
5 mathmath: cocycle_assoc, cocycle, f_mono, t_fac, f_hasPullback
f' 📖CompOp
3 mathmath: CategoryTheory.instMonoF', CategoryTheory.instHasPullbackF', CategoryTheory.instIsIsoF'
t 📖CompOp
3 mathmath: t_inv, t_inv_assoc, t_fac
t' 📖CompOp
3 mathmath: cocycle_assoc, cocycle, t_fac
t'' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cocycle 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
U
f
f_hasPullback
J
t'
CategoryTheory.CategoryStruct.id
cocycle_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
U
f
f_hasPullback
J
t'
f_hasPullback
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
cocycle
f_hasPullback 📖mathematicalCategoryTheory.Limits.HasPullback
V
U
f
f_mono 📖mathematicalCategoryTheory.Mono
V
U
f
t_fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
V
U
f
f_hasPullback
J
t'
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback.fst
t
t_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
J
t
CategoryTheory.CategoryStruct.id
t_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
J
t
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
t_inv

TopCat

Definitions

NameCategoryTheorems
GlueData 📖CompData

---

← Back to Index