| Name | Category | Theorems |
CofanMapObjFun ð | CompOp | â |
HasMap ð | MathDef | 8 mathmath: Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingleâTensorUnit, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXÏ, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjÏ, mapBifunctorRightUnitor_hasMap, mapBifunctorLeftUnitor_hasMap, CofanMapObjFun.hasMap, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjÏX, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingleâTensorUnit_1
|
categoryOfGradedObjects ð | CompOp | 138 mathmath: isoMk_hom, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, Monoidal.associator_naturality, singleObjApplyIso_inv_single_map, CategoryTheory.DifferentialObject.d_squared_apply, shiftFunctor_map_apply, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingleâTensorUnit, mapBifunctorObjObjSingleâIso_hom, mapTrifunctor_map_app_app, comapEquiv_counitIso, zero_apply, Monoidal.pentagon, mapMap_comp_assoc, mapIso_inv, HomologicalComplex.instFaithfulGradedObjectForget, Monoidal.rightUnitor_naturality_assoc, HomologicalComplexâ.toGradedObjectFunctor_obj, HomologicalComplex.forget_map, Monoidal.symmetry, mapTrifunctorObj_obj_obj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXÏ, mapBifunctor_obj_obj, HomologicalComplex.forgetEval_hom_app, Monoidal.rightUnitor_inv_apply, Monoidal.leftUnitor_inv_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, isoMk_inv, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, CategoryTheory.Iso.hom_inv_id_eval_assoc, Monoidal.ιTensorObjâ_associator_inv, singleCompEval_hom_app, singleCompEval_inv_app, HomologicalComplex.gradedHomologyFunctor_map, Monoidal.tensorHom_comp_tensorHom, mapBifunctorRightUnitorCofan_inj, singleObjApplyIsoOfEq_inv_single_map, Monoidal.symmetry_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, mapTrifunctorMapIso_hom, categoryOfGradedObjects_id, Monoidal.tensorHom_comp_tensorHom_assoc, HomologicalComplex.dgoEquivHomologicalComplex_functor, Monoidal.pentagon_inv, mapBifunctorLeftUnitorCofan_inj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjÏ, Monoidal.ιTensorObjâ_associator_inv_assoc, mapBifunctorObjSingleâObjIso_hom, HomologicalComplex.dgoToHomologicalComplex_obj_X, mapMap_comp, comapEquiv_unitIso, singleObjApplyIso_inv_single_map_assoc, eval_map, Monoidal.tensorHom_def, mapBifunctorObjSingleâObjIso_inv, isIso_of_isIso_apply, Monoidal.hexagon_reverse, mapBifunctorRightUnitor_hasMap, Monoidal.id_tensorHom_id, map_obj, map_map, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, hasZeroObject, HomologicalComplex.forget_obj, mapMap_id, HomologicalComplex.homologicalComplexToDGO_map_f, mapBifunctor_map_app, mapBifunctorObjObjSingleâIso_inv, CategoryTheory.Iso.map_hom_inv_id_eval_assoc, Monoidal.braiding_naturality_left, Monoidal.ιTensorObjâ'_associator_hom, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', single_map_singleObjApplyIsoOfEq_hom, comapEq_hom_app, comapEquiv_inverse, CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, Monoidal.braiding_naturality_right, CategoryTheory.Iso.inv_hom_id_eval_assoc, single_map_singleObjApplyIso_hom, comapEq_trans, CategoryTheory.Iso.hom_inv_id_eval, instFaithfulTotal, mapIso_hom, eqToHom_proj, CategoryTheory.Iso.map_hom_inv_id_eval_app_assoc, Monoidal.hexagon_forward, HomologicalComplex.gradedHomologyFunctor_obj, mapTrifunctorObj_obj_map, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, mapBifunctorRightUnitorCofan_inj_assoc, mapBifunctorLeftUnitor_hasMap, CategoryTheory.Iso.map_inv_hom_id_eval, Monoidal.pentagon_inv_assoc, Monoidal.tensorIso_inv, CategoryTheory.Iso.map_inv_hom_id_eval_app, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, eval_obj, CategoryTheory.Iso.map_hom_inv_id_eval, HomologicalComplex.homologicalComplexToDGO_obj_d, mapTrifunctorObj_map_app, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjÏX, HomologicalComplexâ.toGradedObjectFunctor_map, Monoidal.rightUnitor_naturality, Monoidal.leftUnitor_naturality, mapTrifunctor_obj, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingleâTensorUnit_1, HomologicalComplex.dgoEquivHomologicalComplex_inverse, comapEq_inv_app, mapBifunctor_obj_map, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, mapBifunctorLeftUnitorCofan_inj_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, Monoidal.triangle, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, categoryOfGradedObjects_comp, CategoryTheory.Iso.map_inv_hom_id_eval_assoc, Monoidal.leftUnitor_naturality_assoc, single_map_singleObjApplyIso_hom_assoc, Monoidal.tensorIso_hom, comapEquiv_functor, Monoidal.ιTensorObjâ'_associator_hom_assoc, mapTrifunctorMapNatTrans_app_app_app, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, CategoryTheory.Iso.map_hom_inv_id_eval_app, shiftFunctor_obj_apply, comapEq_symm, HomologicalComplexâ.total.forget_map, CategoryTheory.Iso.map_inv_hom_id_eval_app_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, CategoryTheory.Iso.inv_hom_id_eval, HomologicalComplex.forgetEval_inv_app, HomologicalComplexâ.instFaithfulGradedObjectProdToGradedObjectFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, mapTrifunctorMapIso_inv
|
cofanMapObj ð | CompOp | â |
cofanMapObjComp ð | CompOp | â |
comap ð | CompOp | 7 mathmath: comapEquiv_unitIso, comapEq_hom_app, comapEquiv_inverse, comapEq_trans, comapEq_inv_app, comapEquiv_functor, comapEq_symm
|
comapEq ð | CompOp | 6 mathmath: comapEquiv_counitIso, comapEquiv_unitIso, comapEq_hom_app, comapEq_trans, comapEq_inv_app, comapEq_symm
|
comapEquiv ð | CompOp | 4 mathmath: comapEquiv_counitIso, comapEquiv_unitIso, comapEquiv_inverse, comapEquiv_functor
|
descMapObj ð | CompOp | 2 mathmath: ι_descMapObj, ι_descMapObj_assoc
|
eval ð | CompOp | 6 mathmath: HomologicalComplex.forgetEval_hom_app, singleCompEval_hom_app, singleCompEval_inv_app, eval_map, eval_obj, HomologicalComplex.forgetEval_inv_app
|
hasShift ð | CompOp | 23 mathmath: CategoryTheory.DifferentialObject.d_squared_apply, shiftFunctor_map_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, HomologicalComplex.dgoEquivHomologicalComplex_functor, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, shiftFunctor_obj_apply
|
hasZeroMorphisms ð | CompOp | 21 mathmath: CategoryTheory.DifferentialObject.d_squared_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, HomologicalComplex.dgoEquivHomologicalComplex_functor, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f
|
instZeroHomOfHasZeroMorphisms ð | CompOp | 1 mathmath: zero_apply
|
isColimitCofanMapObj ð | CompOp | â |
isColimitCofanMapObjComp ð | CompOp | â |
isoMk ð | CompOp | 2 mathmath: isoMk_hom, isoMk_inv
|
map ð | CompOp | 2 mathmath: map_obj, map_map
|
mapIso ð | CompOp | 2 mathmath: mapIso_inv, mapIso_hom
|
mapMap ð | CompOp | 20 mathmath: HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, mapMap_comp_assoc, congr_mapMap, mapIso_inv, ιMapObjOrZero_mapMap, HomologicalComplexâ.total.mapAux.dâ_mapMap, ιMapObjOrZero_mapMap_assoc, mapMap_comp, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, map_map, HomologicalComplexâ.total.mapAux.mapMap_Dâ, HomologicalComplexâ.total.mapAux.mapMap_Dâ, HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, mapMap_id, mapIso_hom, HomologicalComplexâ.total.mapAux.dâ_mapMap, ι_mapMap_assoc, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, ι_mapMap, HomologicalComplexâ.total.forget_map
|
mapObj ð | CompOp | 70 mathmath: HomologicalComplexâ.totalAux.ιMapObj_Dâ, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, HomologicalComplexâ.totalAux.dâ_eq, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.dâ_eq_zero', HomologicalComplexâ.Dâ_Dâ_assoc, HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, HomologicalComplexâ.Dâ_Dâ, HomologicalComplexâ.Dâ_Dâ_assoc, mapMap_comp_assoc, mapIso_inv, HomologicalComplexâ.Dâ_Dâ, HomologicalComplexâ.ι_Dâ_assoc, CofanMapObjFun.inj_iso_hom, HomologicalComplexâ.dâ_eq_zero, ιMapObjOrZero_mapMap, HomologicalComplexâ.ι_Dâ, mapObj_ext_iff, HomologicalComplexâ.total.mapAux.dâ_mapMap, ιMapObjOrZero_mapMap_assoc, HomologicalComplexâ.totalAux.ιMapObj_Dâ_assoc, HomologicalComplexâ.Dâ_shape, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, HomologicalComplexâ.ι_Dâ_assoc, mapMap_comp, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.totalAux.dâ_eq, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.dâ_eq_zero, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv, map_obj, HomologicalComplexâ.total.mapAux.mapMap_Dâ, HomologicalComplexâ.dâ_eq_zero', HomologicalComplexâ.total.mapAux.mapMap_Dâ, HomologicalComplexâ.totalAux.ιMapObj_Dâ, HomologicalComplexâ.Dâ_shape, HomologicalComplexâ.total.mapAux.mapMap_Dâ_assoc, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, mapMap_id, CofanMapObjFun.inj_iso_hom_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, HomologicalComplexâ.Dâ_Dâ_assoc, mapIso_hom, HomologicalComplexâ.Dâ_Dâ, CofanMapObjFun.ιMapObj_iso_inv_assoc, HomologicalComplexâ.Dâ_Dâ_assoc, HomologicalComplex.mapBifunctorMapHomotopy.commâ_aux, HomologicalComplexâ.total.mapAux.dâ_mapMap, HomologicalComplexâ.ι_Dâ, ι_descMapObj, ι_descMapObj_assoc, ι_mapMap_assoc, HomologicalComplexâ.total_d, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, ι_mapMap, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.totalAux.ιMapObj_Dâ_assoc, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.Dâ_Dâ, ιMapObjOrZero_eq_zero, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc
|
mapObjFun ð | CompOp | 8 mathmath: CofanMapObjFun.inj_iso_hom, mapBifunctorRightUnitorCofan_inj, mapBifunctorLeftUnitorCofan_inj, CofanMapObjFun.ιMapObj_iso_inv, CofanMapObjFun.inj_iso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv_assoc, mapBifunctorRightUnitorCofan_inj_assoc, mapBifunctorLeftUnitorCofan_inj_assoc
|
total ð | CompOp | 1 mathmath: instFaithfulTotal
|
ιMapObj ð | CompOp | 16 mathmath: HomologicalComplexâ.totalAux.ιMapObj_Dâ, ιMapObjOrZero_eq, HomologicalComplexâ.totalAux.dâ_eq, CofanMapObjFun.inj_iso_hom, mapObj_ext_iff, HomologicalComplexâ.totalAux.ιMapObj_Dâ_assoc, HomologicalComplexâ.totalAux.dâ_eq, CofanMapObjFun.ιMapObj_iso_inv, HomologicalComplexâ.totalAux.ιMapObj_Dâ, CofanMapObjFun.inj_iso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv_assoc, ι_descMapObj, ι_descMapObj_assoc, ι_mapMap_assoc, ι_mapMap, HomologicalComplexâ.totalAux.ιMapObj_Dâ_assoc
|
ιMapObjOrZero ð | CompOp | 6 mathmath: ιMapObjOrZero_eq, ιMapObjOrZero_mapMap, ιMapObjOrZero_mapMap_assoc, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.totalAux.dâ_eq', ιMapObjOrZero_eq_zero
|