Documentation Verification Report

GradedObject

📁 Source: Mathlib/CategoryTheory/GradedObject.lean

Statistics

MetricCount
DefinitionsGradedObject, CofanMapObjFun, iso, mk, HasMap, categoryOfGradedObjects, cofanMapObj, cofanMapObjComp, comap, comapEq, comapEquiv, descMapObj, eval, hasShift, hasZeroMorphisms, instZeroHomOfHasZeroMorphisms, isColimitCofanMapObj, isColimitCofanMapObjComp, isoMk, map, mapIso, mapMap, mapObj, mapObjFun, total, ιMapObj, ιMapObjOrZero, GradedObjectWithShift, inhabitedGradedObject
29
TheoremshasMap, inj_iso_hom, inj_iso_hom_assoc, ιMapObj_iso_inv, ιMapObj_iso_inv_assoc, categoryOfGradedObjects_comp, categoryOfGradedObjects_id, comapEq_hom_app, comapEq_inv_app, comapEq_symm, comapEq_trans, comapEquiv_counitIso, comapEquiv_functor, comapEquiv_inverse, comapEquiv_unitIso, congr_mapMap, eqToHom_apply, eqToHom_proj, eval_map, eval_obj, hasMap_comp, hasMap_of_iso, hasZeroObject, hom_ext, hom_ext_iff, instFaithfulTotal, isIso_apply_of_isIso, isIso_of_isIso_apply, isoMk_hom, isoMk_inv, mapIso_hom, mapIso_inv, mapMap_comp, mapMap_comp_assoc, mapMap_id, mapObj_ext, mapObj_ext_iff, map_map, map_obj, shiftFunctor_map_apply, shiftFunctor_obj_apply, zero_apply, ιMapObjOrZero_eq, ιMapObjOrZero_eq_zero, ιMapObjOrZero_mapMap, ιMapObjOrZero_mapMap_assoc, ι_descMapObj, ι_descMapObj_assoc, ι_mapMap, ι_mapMap_assoc, hom_inv_id_eval, hom_inv_id_eval_assoc, inv_hom_id_eval, inv_hom_id_eval_assoc, map_hom_inv_id_eval, map_hom_inv_id_eval_app, map_hom_inv_id_eval_app_assoc, map_hom_inv_id_eval_assoc, map_inv_hom_id_eval, map_inv_hom_id_eval_app, map_inv_hom_id_eval_app_assoc, map_inv_hom_id_eval_assoc
62
Total91

CategoryTheory

Definitions

NameCategoryTheorems
GradedObject 📖CompOp
115 mathmath: GradedObject.isoMk_hom, Functor.mapBifunctorHomologicalComplexObj_map_f_f, GradedObject.Monoidal.associator_naturality, GradedObject.singleObjApplyIso_inv_single_map, GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit, GradedObject.mapBifunctorObjObjSingle₀Iso_hom, GradedObject.mapTrifunctor_map_app_app, GradedObject.comapEquiv_counitIso, GradedObject.zero_apply, GradedObject.Monoidal.pentagon, GradedObject.mapMap_comp_assoc, GradedObject.mapIso_inv, HomologicalComplex.instFaithfulGradedObjectForget, GradedObject.Monoidal.rightUnitor_naturality_assoc, HomologicalComplex₂.toGradedObjectFunctor_obj, HomologicalComplex.forget_map, GradedObject.Monoidal.symmetry, GradedObject.mapTrifunctorObj_obj_obj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXπ, GradedObject.mapBifunctor_obj_obj, HomologicalComplex.forgetEval_hom_app, GradedObject.Monoidal.rightUnitor_inv_apply, GradedObject.Monoidal.leftUnitor_inv_apply, GradedObject.isoMk_inv, Iso.hom_inv_id_eval_assoc, GradedObject.Monoidal.ιTensorObj₃_associator_inv, GradedObject.singleCompEval_hom_app, GradedObject.singleCompEval_inv_app, HomologicalComplex.gradedHomologyFunctor_map, GradedObject.Monoidal.tensorHom_comp_tensorHom, GradedObject.mapBifunctorRightUnitorCofan_inj, GradedObject.singleObjApplyIsoOfEq_inv_single_map, GradedObject.Monoidal.symmetry_assoc, GradedObject.mapTrifunctorMapIso_hom, GradedObject.categoryOfGradedObjects_id, GradedObject.Monoidal.tensorHom_comp_tensorHom_assoc, GradedObject.Monoidal.pentagon_inv, GradedObject.mapBifunctorLeftUnitorCofan_inj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ, GradedObject.Monoidal.ιTensorObj₃_associator_inv_assoc, GradedObject.mapBifunctorObjSingle₀ObjIso_hom, GradedObject.mapMap_comp, GradedObject.comapEquiv_unitIso, GradedObject.singleObjApplyIso_inv_single_map_assoc, GradedObject.eval_map, GradedObject.Monoidal.tensorHom_def, GradedObject.mapBifunctorObjSingle₀ObjIso_inv, GradedObject.isIso_of_isIso_apply, GradedObject.Monoidal.hexagon_reverse, GradedObject.mapBifunctorRightUnitor_hasMap, GradedObject.Monoidal.id_tensorHom_id, GradedObject.map_obj, GradedObject.map_map, GradedObject.hasZeroObject, HomologicalComplex.forget_obj, GradedObject.mapMap_id, GradedObject.mapBifunctor_map_app, GradedObject.mapBifunctorObjObjSingle₀Iso_inv, Iso.map_hom_inv_id_eval_assoc, GradedObject.Monoidal.braiding_naturality_left, GradedObject.Monoidal.ιTensorObj₃'_associator_hom, GradedObject.single_map_singleObjApplyIsoOfEq_hom, GradedObject.comapEq_hom_app, GradedObject.comapEquiv_inverse, GradedObject.Monoidal.braiding_naturality_right, Iso.inv_hom_id_eval_assoc, GradedObject.single_map_singleObjApplyIso_hom, GradedObject.comapEq_trans, Iso.hom_inv_id_eval, GradedObject.instFaithfulTotal, GradedObject.mapIso_hom, GradedObject.eqToHom_proj, Iso.map_hom_inv_id_eval_app_assoc, GradedObject.Monoidal.hexagon_forward, HomologicalComplex.gradedHomologyFunctor_obj, GradedObject.mapTrifunctorObj_obj_map, GradedObject.mapBifunctorRightUnitorCofan_inj_assoc, GradedObject.mapBifunctorLeftUnitor_hasMap, Iso.map_inv_hom_id_eval, GradedObject.Monoidal.pentagon_inv_assoc, GradedObject.Monoidal.tensorIso_inv, Iso.map_inv_hom_id_eval_app, GradedObject.eval_obj, Iso.map_hom_inv_id_eval, GradedObject.mapTrifunctorObj_map_app, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjπX, HomologicalComplex₂.toGradedObjectFunctor_map, GradedObject.Monoidal.rightUnitor_naturality, GradedObject.Monoidal.leftUnitor_naturality, GradedObject.mapTrifunctor_obj, GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit_1, GradedObject.comapEq_inv_app, GradedObject.mapBifunctor_obj_map, GradedObject.mapBifunctorLeftUnitorCofan_inj_assoc, Functor.mapBifunctorHomologicalComplex_obj_map_f_f, GradedObject.Monoidal.triangle, Functor.mapBifunctorHomologicalComplexObj_obj_d_f, GradedObject.categoryOfGradedObjects_comp, Iso.map_inv_hom_id_eval_assoc, GradedObject.Monoidal.leftUnitor_naturality_assoc, GradedObject.single_map_singleObjApplyIso_hom_assoc, GradedObject.Monoidal.tensorIso_hom, GradedObject.comapEquiv_functor, GradedObject.Monoidal.ιTensorObj₃'_associator_hom_assoc, GradedObject.mapTrifunctorMapNatTrans_app_app_app, Iso.map_hom_inv_id_eval_app, GradedObject.comapEq_symm, HomologicalComplex₂.total.forget_map, Iso.map_inv_hom_id_eval_app_assoc, Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, Iso.inv_hom_id_eval, HomologicalComplex.forgetEval_inv_app, HomologicalComplex₂.instFaithfulGradedObjectProdToGradedObjectFunctor, Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, GradedObject.mapTrifunctorMapIso_inv
GradedObjectWithShift 📖CompOp
23 mathmath: DifferentialObject.d_squared_apply, GradedObject.shiftFunctor_map_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, HomologicalComplex.dgoEquivHomologicalComplex_functor, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homologicalComplexToDGO_map_f, DifferentialObject.objEqToHom_d, DifferentialObject.eqToHom_f', DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, DifferentialObject.objEqToHom_d_assoc, DifferentialObject.d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, GradedObject.shiftFunctor_obj_apply
inhabitedGradedObject 📖CompOp—

CategoryTheory.GradedObject

Definitions

NameCategoryTheorems
CofanMapObjFun 📖CompOp—
HasMap 📖MathDef
8 mathmath: Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXπ, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ, mapBifunctorRightUnitor_hasMap, mapBifunctorLeftUnitor_hasMap, CofanMapObjFun.hasMap, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjπX, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit_1
categoryOfGradedObjects 📖CompOp
138 mathmath: isoMk_hom, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, Monoidal.associator_naturality, singleObjApplyIso_inv_single_map, CategoryTheory.DifferentialObject.d_squared_apply, shiftFunctor_map_apply, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit, mapBifunctorObjObjSingle₀Iso_hom, mapTrifunctor_map_app_app, comapEquiv_counitIso, zero_apply, Monoidal.pentagon, mapMap_comp_assoc, mapIso_inv, HomologicalComplex.instFaithfulGradedObjectForget, Monoidal.rightUnitor_naturality_assoc, HomologicalComplex₂.toGradedObjectFunctor_obj, HomologicalComplex.forget_map, Monoidal.symmetry, mapTrifunctorObj_obj_obj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXπ, mapBifunctor_obj_obj, HomologicalComplex.forgetEval_hom_app, Monoidal.rightUnitor_inv_apply, Monoidal.leftUnitor_inv_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, isoMk_inv, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, CategoryTheory.Iso.hom_inv_id_eval_assoc, Monoidal.ιTensorObj₃_associator_inv, singleCompEval_hom_app, singleCompEval_inv_app, HomologicalComplex.gradedHomologyFunctor_map, Monoidal.tensorHom_comp_tensorHom, mapBifunctorRightUnitorCofan_inj, singleObjApplyIsoOfEq_inv_single_map, Monoidal.symmetry_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, mapTrifunctorMapIso_hom, categoryOfGradedObjects_id, Monoidal.tensorHom_comp_tensorHom_assoc, HomologicalComplex.dgoEquivHomologicalComplex_functor, Monoidal.pentagon_inv, mapBifunctorLeftUnitorCofan_inj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ, Monoidal.ιTensorObj₃_associator_inv_assoc, mapBifunctorObjSingle₀ObjIso_hom, HomologicalComplex.dgoToHomologicalComplex_obj_X, mapMap_comp, comapEquiv_unitIso, singleObjApplyIso_inv_single_map_assoc, eval_map, Monoidal.tensorHom_def, mapBifunctorObjSingle₀ObjIso_inv, isIso_of_isIso_apply, Monoidal.hexagon_reverse, mapBifunctorRightUnitor_hasMap, Monoidal.id_tensorHom_id, map_obj, map_map, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, hasZeroObject, HomologicalComplex.forget_obj, mapMap_id, HomologicalComplex.homologicalComplexToDGO_map_f, mapBifunctor_map_app, mapBifunctorObjObjSingle₀Iso_inv, CategoryTheory.Iso.map_hom_inv_id_eval_assoc, Monoidal.braiding_naturality_left, Monoidal.ιTensorObj₃'_associator_hom, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', single_map_singleObjApplyIsoOfEq_hom, comapEq_hom_app, comapEquiv_inverse, CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, Monoidal.braiding_naturality_right, CategoryTheory.Iso.inv_hom_id_eval_assoc, single_map_singleObjApplyIso_hom, comapEq_trans, CategoryTheory.Iso.hom_inv_id_eval, instFaithfulTotal, mapIso_hom, eqToHom_proj, CategoryTheory.Iso.map_hom_inv_id_eval_app_assoc, Monoidal.hexagon_forward, HomologicalComplex.gradedHomologyFunctor_obj, mapTrifunctorObj_obj_map, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, mapBifunctorRightUnitorCofan_inj_assoc, mapBifunctorLeftUnitor_hasMap, CategoryTheory.Iso.map_inv_hom_id_eval, Monoidal.pentagon_inv_assoc, Monoidal.tensorIso_inv, CategoryTheory.Iso.map_inv_hom_id_eval_app, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, eval_obj, CategoryTheory.Iso.map_hom_inv_id_eval, HomologicalComplex.homologicalComplexToDGO_obj_d, mapTrifunctorObj_map_app, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjπX, HomologicalComplex₂.toGradedObjectFunctor_map, Monoidal.rightUnitor_naturality, Monoidal.leftUnitor_naturality, mapTrifunctor_obj, Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit_1, HomologicalComplex.dgoEquivHomologicalComplex_inverse, comapEq_inv_app, mapBifunctor_obj_map, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, mapBifunctorLeftUnitorCofan_inj_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, Monoidal.triangle, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, categoryOfGradedObjects_comp, CategoryTheory.Iso.map_inv_hom_id_eval_assoc, Monoidal.leftUnitor_naturality_assoc, single_map_singleObjApplyIso_hom_assoc, Monoidal.tensorIso_hom, comapEquiv_functor, Monoidal.ιTensorObj₃'_associator_hom_assoc, mapTrifunctorMapNatTrans_app_app_app, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, CategoryTheory.Iso.map_hom_inv_id_eval_app, shiftFunctor_obj_apply, comapEq_symm, HomologicalComplex₂.total.forget_map, CategoryTheory.Iso.map_inv_hom_id_eval_app_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, CategoryTheory.Iso.inv_hom_id_eval, HomologicalComplex.forgetEval_inv_app, HomologicalComplex₂.instFaithfulGradedObjectProdToGradedObjectFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, mapTrifunctorMapIso_inv
cofanMapObj 📖CompOp—
cofanMapObjComp 📖CompOp—
comap 📖CompOp
7 mathmath: comapEquiv_unitIso, comapEq_hom_app, comapEquiv_inverse, comapEq_trans, comapEq_inv_app, comapEquiv_functor, comapEq_symm
comapEq 📖CompOp
6 mathmath: comapEquiv_counitIso, comapEquiv_unitIso, comapEq_hom_app, comapEq_trans, comapEq_inv_app, comapEq_symm
comapEquiv 📖CompOp
4 mathmath: comapEquiv_counitIso, comapEquiv_unitIso, comapEquiv_inverse, comapEquiv_functor
descMapObj 📖CompOp
2 mathmath: ι_descMapObj, ι_descMapObj_assoc
eval 📖CompOp
6 mathmath: HomologicalComplex.forgetEval_hom_app, singleCompEval_hom_app, singleCompEval_inv_app, eval_map, eval_obj, HomologicalComplex.forgetEval_inv_app
hasShift 📖CompOp
23 mathmath: CategoryTheory.DifferentialObject.d_squared_apply, shiftFunctor_map_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, HomologicalComplex.dgoEquivHomologicalComplex_functor, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, shiftFunctor_obj_apply
hasZeroMorphisms 📖CompOp
21 mathmath: CategoryTheory.DifferentialObject.d_squared_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, HomologicalComplex.dgoEquivHomologicalComplex_functor, HomologicalComplex.dgoToHomologicalComplex_obj_X, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.DifferentialObject.objEqToHom_d, CategoryTheory.DifferentialObject.eqToHom_f', CategoryTheory.DifferentialObject.objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, CategoryTheory.DifferentialObject.objEqToHom_d_assoc, CategoryTheory.DifferentialObject.d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f
instZeroHomOfHasZeroMorphisms 📖CompOp
1 mathmath: zero_apply
isColimitCofanMapObj 📖CompOp—
isColimitCofanMapObjComp 📖CompOp—
isoMk 📖CompOp
2 mathmath: isoMk_hom, isoMk_inv
map 📖CompOp
2 mathmath: map_obj, map_map
mapIso 📖CompOp
2 mathmath: mapIso_inv, mapIso_hom
mapMap 📖CompOp
20 mathmath: HomologicalComplex₂.total.mapAux.mapMap_D₁_assoc, mapMap_comp_assoc, congr_mapMap, mapIso_inv, ιMapObjOrZero_mapMap, HomologicalComplex₂.total.mapAux.d₁_mapMap, ιMapObjOrZero_mapMap_assoc, mapMap_comp, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, map_map, HomologicalComplex₂.total.mapAux.mapMap_D₁, HomologicalComplex₂.total.mapAux.mapMap_D₂, HomologicalComplex₂.total.mapAux.mapMap_D₂_assoc, mapMap_id, mapIso_hom, HomologicalComplex₂.total.mapAux.d₂_mapMap, ι_mapMap_assoc, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, ι_mapMap, HomologicalComplex₂.total.forget_map
mapObj 📖CompOp
70 mathmath: HomologicalComplex₂.totalAux.ιMapObj_D₁, HomologicalComplex₂.totalFlipIso_hom_f_D₁, HomologicalComplex₂.totalAux.d₂_eq, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, HomologicalComplex₂.d₁_eq_zero', HomologicalComplex₂.D₁_D₁_assoc, HomologicalComplex₂.total.mapAux.mapMap_D₁_assoc, HomologicalComplex₂.D₁_D₁, HomologicalComplex₂.D₂_D₁_assoc, mapMap_comp_assoc, mapIso_inv, HomologicalComplex₂.D₂_D₂, HomologicalComplex₂.ι_D₁_assoc, CofanMapObjFun.inj_iso_hom, HomologicalComplex₂.d₂_eq_zero, ιMapObjOrZero_mapMap, HomologicalComplex₂.ι_D₂, mapObj_ext_iff, HomologicalComplex₂.total.mapAux.d₁_mapMap, ιMapObjOrZero_mapMap_assoc, HomologicalComplex₂.totalAux.ιMapObj_D₂_assoc, HomologicalComplex₂.D₁_shape, HomologicalComplex₂.totalFlipIsoX_hom_D₂_assoc, HomologicalComplex₂.ι_D₂_assoc, mapMap_comp, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex₂.totalAux.d₁_eq, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, HomologicalComplex₂.d₁_eq_zero, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv, map_obj, HomologicalComplex₂.total.mapAux.mapMap_D₁, HomologicalComplex₂.d₂_eq_zero', HomologicalComplex₂.total.mapAux.mapMap_D₂, HomologicalComplex₂.totalAux.ιMapObj_D₂, HomologicalComplex₂.D₂_shape, HomologicalComplex₂.total.mapAux.mapMap_D₂_assoc, HomologicalComplex₂.totalFlipIso_hom_f_D₂, mapMap_id, CofanMapObjFun.inj_iso_hom_assoc, HomologicalComplex₂.D₁_totalShift₁XIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom, HomologicalComplex₂.totalFlipIso_hom_f_D₁_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₁, HomologicalComplex₂.D₂_D₂_assoc, mapIso_hom, HomologicalComplex₂.D₂_D₁, CofanMapObjFun.ιMapObj_iso_inv_assoc, HomologicalComplex₂.D₁_D₂_assoc, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, HomologicalComplex₂.total.mapAux.d₂_mapMap, HomologicalComplex₂.ι_D₁, ι_descMapObj, ι_descMapObj_assoc, ι_mapMap_assoc, HomologicalComplex₂.total_d, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₂, HomologicalComplex₂.D₁_totalShift₂XIso_hom, ι_mapMap, HomologicalComplex₂.D₂_totalShift₂XIso_hom, HomologicalComplex₂.totalAux.ιMapObj_D₁_assoc, HomologicalComplex₂.totalAux.d₁_eq', HomologicalComplex₂.D₁_D₂, ιMapObjOrZero_eq_zero, HomologicalComplex₂.totalFlipIsoX_hom_D₁_assoc, HomologicalComplex₂.totalFlipIso_hom_f_D₂_assoc
mapObjFun 📖CompOp
8 mathmath: CofanMapObjFun.inj_iso_hom, mapBifunctorRightUnitorCofan_inj, mapBifunctorLeftUnitorCofan_inj, CofanMapObjFun.ιMapObj_iso_inv, CofanMapObjFun.inj_iso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv_assoc, mapBifunctorRightUnitorCofan_inj_assoc, mapBifunctorLeftUnitorCofan_inj_assoc
total 📖CompOp
1 mathmath: instFaithfulTotal
ιMapObj 📖CompOp
16 mathmath: HomologicalComplex₂.totalAux.ιMapObj_D₁, ιMapObjOrZero_eq, HomologicalComplex₂.totalAux.d₂_eq, CofanMapObjFun.inj_iso_hom, mapObj_ext_iff, HomologicalComplex₂.totalAux.ιMapObj_D₂_assoc, HomologicalComplex₂.totalAux.d₁_eq, CofanMapObjFun.ιMapObj_iso_inv, HomologicalComplex₂.totalAux.ιMapObj_D₂, CofanMapObjFun.inj_iso_hom_assoc, CofanMapObjFun.ιMapObj_iso_inv_assoc, ι_descMapObj, ι_descMapObj_assoc, ι_mapMap_assoc, ι_mapMap, HomologicalComplex₂.totalAux.ιMapObj_D₁_assoc
ιMapObjOrZero 📖CompOp
6 mathmath: ιMapObjOrZero_eq, ιMapObjOrZero_mapMap, ιMapObjOrZero_mapMap_assoc, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex₂.totalAux.d₁_eq', ιMapObjOrZero_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
categoryOfGradedObjects_comp 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
——
categoryOfGradedObjects_id 📖mathematical—CategoryTheory.CategoryStruct.id
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
——
comapEq_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.GradedObject
categoryOfGradedObjects
comap
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
comapEq
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
——
comapEq_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.GradedObject
categoryOfGradedObjects
comap
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
comapEq
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
——
comapEq_symm 📖mathematical—comapEq
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor.category
comap
——
comapEq_trans 📖mathematical—comapEq
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor.category
comap
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
hom_ext
CategoryTheory.Category.comp_id
comapEquiv_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.GradedObject
categoryOfGradedObjects
comapEquiv
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.pi
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Pi.instCategoryComp
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Pi.comap
CategoryTheory.Functor.id
CategoryTheory.Pi.comapComp
comapEq
——
comapEquiv_functor 📖mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.GradedObject
categoryOfGradedObjects
comapEquiv
comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
——
comapEquiv_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.GradedObject
categoryOfGradedObjects
comapEquiv
comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
——
comapEquiv_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.GradedObject
categoryOfGradedObjects
comapEquiv
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
comap
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.comp
comapEq
CategoryTheory.Iso.symm
CategoryTheory.pi
CategoryTheory.Pi.instCategoryComp
CategoryTheory.Pi.comap
CategoryTheory.Pi.comapComp
——
congr_mapMap 📖mathematicalHasMapmapMap——
eqToHom_apply 📖mathematical—CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.pi
——
eqToHom_proj 📖mathematical—CategoryTheory.eqToHom
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
——
eval_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.GradedObject
categoryOfGradedObjects
eval
——
eval_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
eval
——
hasMap_comp 📖—HasMap
mapObj
———
hasMap_of_iso 📖—HasMap——CategoryTheory.Limits.hasColimit_of_iso
hasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
CategoryTheory.GradedObject
categoryOfGradedObjects
—hom_ext
CategoryTheory.Limits.HasZeroObject.from_zero_ext
CategoryTheory.Limits.HasZeroObject.to_zero_ext
hom_ext 📖—————
hom_ext_iff 📖————hom_ext
instFaithfulTotal 📖mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Functor.Faithful
CategoryTheory.GradedObject
categoryOfGradedObjects
total
—hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.whisker_eq
CategoryTheory.Limits.colimit.ι_map
CategoryTheory.Mono.right_cancellation
CategoryTheory.IsSplitMono.mono
CategoryTheory.Limits.isSplitMono_sigma_ι
isIso_apply_of_isIso 📖mathematical—CategoryTheory.IsIso—CategoryTheory.Functor.map_isIso
isIso_of_isIso_apply 📖mathematicalCategoryTheory.IsIsoCategoryTheory.GradedObject
categoryOfGradedObjects
—CategoryTheory.Iso.isIso_hom
isoMk_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.GradedObject
categoryOfGradedObjects
isoMk
——
isoMk_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.GradedObject
categoryOfGradedObjects
isoMk
——
mapIso_hom 📖mathematicalHasMapCategoryTheory.Iso.hom
CategoryTheory.GradedObject
categoryOfGradedObjects
mapObj
mapIso
mapMap
——
mapIso_inv 📖mathematicalHasMapCategoryTheory.Iso.inv
CategoryTheory.GradedObject
categoryOfGradedObjects
mapObj
mapIso
mapMap
——
mapMap_comp 📖mathematicalHasMapmapMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
mapObj
—hom_ext
mapObj_ext
ι_mapMap
CategoryTheory.Category.assoc
ι_mapMap_assoc
mapMap_comp_assoc 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
mapObj
mapMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapMap_comp
mapMap_id 📖mathematicalHasMapmapMap
CategoryTheory.CategoryStruct.id
CategoryTheory.GradedObject
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
mapObj
—hom_ext
mapObj_ext
ι_mapMap
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mapObj_ext 📖—HasMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
——CategoryTheory.Limits.Cofan.IsColimit.hom_ext
mapObj_ext_iff 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
—mapObj_ext
map_map 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
Set.Elem
Set.preimage
Set
Set.instSingletonSet
CategoryTheory.discreteCategory
CategoryTheory.Functor.map
CategoryTheory.GradedObject
categoryOfGradedObjects
map
mapMap
——
map_obj 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
Set.Elem
Set.preimage
Set
Set.instSingletonSet
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
map
mapObj
——
shiftFunctor_map_apply 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.GradedObjectWithShift
categoryOfGradedObjects
CategoryTheory.shiftFunctor
Int.instAddMonoid
hasShift
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
——
shiftFunctor_obj_apply 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.GradedObjectWithShift
categoryOfGradedObjects
CategoryTheory.shiftFunctor
Int.instAddMonoid
hasShift
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
——
zero_apply 📖mathematical—Quiver.Hom
CategoryTheory.GradedObject
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
categoryOfGradedObjects
instZeroHomOfHasZeroMorphisms
CategoryTheory.Limits.HasZeroMorphisms.zero
——
ιMapObjOrZero_eq 📖mathematicalHasMapιMapObjOrZero
ιMapObj
——
ιMapObjOrZero_eq_zero 📖mathematicalHasMapιMapObjOrZero
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
mapObj
CategoryTheory.Limits.HasZeroMorphisms.zero
——
ιMapObjOrZero_mapMap 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObjOrZero
mapMap
—ιMapObjOrZero_eq
ι_mapMap
ιMapObjOrZero_eq_zero
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
ιMapObjOrZero_mapMap_assoc 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObjOrZero
mapMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιMapObjOrZero_mapMap
ι_descMapObj 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
descMapObj
—CategoryTheory.Limits.Cofan.IsColimit.fac
ι_descMapObj_assoc 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
descMapObj
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_descMapObj
ι_mapMap 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
mapMap
—ι_descMapObj
ι_mapMap_assoc 📖mathematicalHasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObj
ιMapObj
mapMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapMap

CategoryTheory.GradedObject.CofanMapObjFun

Definitions

NameCategoryTheorems
iso 📖CompOp
4 mathmath: inj_iso_hom, ιMapObj_iso_inv, inj_iso_hom_assoc, ιMapObj_iso_inv_assoc
mk 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
hasMap 📖mathematical—CategoryTheory.GradedObject.HasMap——
inj_iso_hom 📖mathematicalCategoryTheory.GradedObject.HasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GradedObject.mapObjFun
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Set.Elem
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.GradedObject.mapObj
CategoryTheory.Iso.hom
iso
CategoryTheory.GradedObject.ιMapObj
—CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
inj_iso_hom_assoc 📖mathematicalCategoryTheory.GradedObject.HasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GradedObject.mapObjFun
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Set.Elem
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.GradedObject.mapObj
CategoryTheory.Iso.hom
iso
CategoryTheory.GradedObject.ιMapObj
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inj_iso_hom
ιMapObj_iso_inv 📖mathematicalCategoryTheory.GradedObject.HasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GradedObject.mapObj
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Set.Elem
Set.preimage
Set
Set.instSingletonSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.GradedObject.mapObjFun
CategoryTheory.GradedObject.ιMapObj
CategoryTheory.Iso.inv
iso
Set.instMembership
—CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv
ιMapObj_iso_inv_assoc 📖mathematicalCategoryTheory.GradedObject.HasMapCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GradedObject.mapObj
CategoryTheory.GradedObject.ιMapObj
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
Set.Elem
Set.preimage
Set
Set.instSingletonSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
CategoryTheory.GradedObject.mapObjFun
CategoryTheory.Iso.inv
iso
Set.instMembership
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιMapObj_iso_inv

CategoryTheory.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
hom_inv_id_eval 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
CategoryTheory.CategoryStruct.id
—CategoryTheory.GradedObject.categoryOfGradedObjects_comp
hom_inv_id
CategoryTheory.GradedObject.categoryOfGradedObjects_id
hom_inv_id_eval_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_id_eval
inv_hom_id_eval 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
CategoryTheory.CategoryStruct.id
—CategoryTheory.GradedObject.categoryOfGradedObjects_comp
inv_hom_id
CategoryTheory.GradedObject.categoryOfGradedObjects_id
inv_hom_id_eval_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_id_eval
map_hom_inv_id_eval 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
CategoryTheory.CategoryStruct.id
—CategoryTheory.Functor.map_comp
CategoryTheory.GradedObject.categoryOfGradedObjects_comp
hom_inv_id
CategoryTheory.GradedObject.categoryOfGradedObjects_id
CategoryTheory.Functor.map_id
map_hom_inv_id_eval_app 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
CategoryTheory.CategoryStruct.id
—CategoryTheory.NatTrans.comp_app
CategoryTheory.Functor.map_comp
hom_inv_id_eval
CategoryTheory.Functor.map_id
CategoryTheory.NatTrans.id_app
map_hom_inv_id_eval_app_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_hom_inv_id_eval_app
map_hom_inv_id_eval_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
hom
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
inv
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_hom_inv_id_eval
map_inv_hom_id_eval 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
CategoryTheory.CategoryStruct.id
—CategoryTheory.Functor.map_comp
CategoryTheory.GradedObject.categoryOfGradedObjects_comp
inv_hom_id
CategoryTheory.GradedObject.categoryOfGradedObjects_id
CategoryTheory.Functor.map_id
map_inv_hom_id_eval_app 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
CategoryTheory.CategoryStruct.id
—CategoryTheory.NatTrans.comp_app
CategoryTheory.Functor.map_comp
inv_hom_id_eval
CategoryTheory.Functor.map_id
CategoryTheory.NatTrans.id_app
map_inv_hom_id_eval_app_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_inv_hom_id_eval_app
map_inv_hom_id_eval_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
inv
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
hom
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
map_inv_hom_id_eval

---

← Back to Index