Documentation Verification Report

Unitor

šŸ“ Source: Mathlib/CategoryTheory/GradedObject/Unitor.lean

Statistics

MetricCount
DefinitionsTriangleIndexData, p₁₂, pā‚‚ā‚ƒ, ρ₁₂, Ļā‚‚ā‚ƒ, mapBifunctorLeftUnitor, mapBifunctorLeftUnitorCofan, mapBifunctorLeftUnitorCofanIsColimit, mapBifunctorObjObjSingleā‚€IsInitial, mapBifunctorObjObjSingleā‚€Iso, mapBifunctorObjSingleā‚€ObjIsInitial, mapBifunctorObjSingleā‚€ObjIso, mapBifunctorRightUnitor, mapBifunctorRightUnitorCofan, mapBifunctorRightUnitorCofanIsColimit
15
Theoremshp₁₂, hpā‚‚ā‚ƒ, h₁, hā‚ƒ, r_zero, mapBifunctorLeftUnitorCofan_inj, mapBifunctorLeftUnitorCofan_inj_assoc, mapBifunctorLeftUnitor_hasMap, mapBifunctorLeftUnitor_inv_apply, mapBifunctorLeftUnitor_inv_naturality, mapBifunctorLeftUnitor_inv_naturality_assoc, mapBifunctorLeftUnitor_naturality, mapBifunctorLeftUnitor_naturality_assoc, mapBifunctorObjObjSingleā‚€Iso_hom, mapBifunctorObjObjSingleā‚€Iso_inv, mapBifunctorObjSingleā‚€ObjIso_hom, mapBifunctorObjSingleā‚€ObjIso_inv, mapBifunctorRightUnitorCofan_inj, mapBifunctorRightUnitorCofan_inj_assoc, mapBifunctorRightUnitor_hasMap, mapBifunctorRightUnitor_inv_apply, mapBifunctorRightUnitor_inv_naturality, mapBifunctorRightUnitor_inv_naturality_assoc, mapBifunctorRightUnitor_naturality, mapBifunctorRightUnitor_naturality_assoc, mapBifunctor_triangle, ι_mapBifunctorLeftUnitor_hom_apply, ι_mapBifunctorLeftUnitor_hom_apply_assoc, ι_mapBifunctorRightUnitor_hom_apply, ι_mapBifunctorRightUnitor_hom_apply_assoc
30
Total45

CategoryTheory.GradedObject

Definitions

NameCategoryTheorems
TriangleIndexData šŸ“–CompData—
mapBifunctorLeftUnitor šŸ“–CompOp
8 mathmath: mapBifunctor_triangle, mapBifunctorLeftUnitor_inv_naturality_assoc, mapBifunctorLeftUnitor_inv_apply, mapBifunctorLeftUnitor_naturality, ι_mapBifunctorLeftUnitor_hom_apply, mapBifunctorLeftUnitor_naturality_assoc, mapBifunctorLeftUnitor_inv_naturality, ι_mapBifunctorLeftUnitor_hom_apply_assoc
mapBifunctorLeftUnitorCofan šŸ“–CompOp
2 mathmath: mapBifunctorLeftUnitorCofan_inj, mapBifunctorLeftUnitorCofan_inj_assoc
mapBifunctorLeftUnitorCofanIsColimit šŸ“–CompOp—
mapBifunctorObjObjSingleā‚€IsInitial šŸ“–CompOp—
mapBifunctorObjObjSingleā‚€Iso šŸ“–CompOp
2 mathmath: mapBifunctorObjObjSingleā‚€Iso_hom, mapBifunctorObjObjSingleā‚€Iso_inv
mapBifunctorObjSingleā‚€ObjIsInitial šŸ“–CompOp—
mapBifunctorObjSingleā‚€ObjIso šŸ“–CompOp
2 mathmath: mapBifunctorObjSingleā‚€ObjIso_hom, mapBifunctorObjSingleā‚€ObjIso_inv
mapBifunctorRightUnitor šŸ“–CompOp
8 mathmath: mapBifunctor_triangle, ι_mapBifunctorRightUnitor_hom_apply, mapBifunctorRightUnitor_inv_naturality_assoc, mapBifunctorRightUnitor_inv_apply, mapBifunctorRightUnitor_naturality, mapBifunctorRightUnitor_naturality_assoc, ι_mapBifunctorRightUnitor_hom_apply_assoc, mapBifunctorRightUnitor_inv_naturality
mapBifunctorRightUnitorCofan šŸ“–CompOp
2 mathmath: mapBifunctorRightUnitorCofan_inj, mapBifunctorRightUnitorCofan_inj_assoc
mapBifunctorRightUnitorCofanIsColimit šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
mapBifunctorLeftUnitorCofan_inj šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
Set.Elem
Set.preimage
Set
Set.instSingletonSet
mapObjFun
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
mapBifunctorLeftUnitorCofan
Set.instMembership
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
single
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjApplyIso
—CategoryTheory.Category.comp_id
mapBifunctorLeftUnitorCofan_inj_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObjFun
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
CategoryTheory.Limits.Cocone.pt
Set.Elem
CategoryTheory.Discrete.functor
mapBifunctorLeftUnitorCofan
CategoryTheory.NatTrans.app
single
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjApplyIso
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorLeftUnitor_hasMap šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
—CofanMapObjFun.hasMap
mapBifunctorLeftUnitor_inv_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.Iso.inv
mapBifunctorMapObj
mapBifunctorLeftUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
single
CategoryTheory.Functor.map
singleObjApplyIso
ιMapBifunctorMapObj
——
mapBifunctorLeftUnitor_inv_naturality šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
CategoryTheory.Iso.inv
mapBifunctorLeftUnitor
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
—hom_ext
mapBifunctorLeftUnitor_inv_apply
CategoryTheory.Category.assoc
ι_mapBifunctorMapMap
CategoryTheory.Functor.map_id
CategoryTheory.NatTrans.id_app
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality_assoc
mapBifunctorLeftUnitor_inv_naturality_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
CategoryTheory.Iso.inv
mapBifunctorLeftUnitor
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorLeftUnitor_inv_naturality
mapBifunctorLeftUnitor_naturality šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
mapBifunctorLeftUnitor
—CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
mapBifunctorLeftUnitor_inv_naturality
CategoryTheory.Iso.hom_inv_id_assoc
mapBifunctorLeftUnitor_naturality_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
mapBifunctorLeftUnitor
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorLeftUnitor_naturality
mapBifunctorObjObjSingleā‚€Iso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor
CategoryTheory.Functor.category
mapBifunctor
singleā‚€
mapBifunctorObjObjSingleā‚€Iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
singleObjApplyIsoOfEq
CategoryTheory.NatTrans.app
CategoryTheory.Functor.flip
CategoryTheory.Functor.id
——
mapBifunctorObjObjSingleā‚€Iso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor
CategoryTheory.Functor.category
mapBifunctor
singleā‚€
mapBifunctorObjObjSingleā‚€Iso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.flip
CategoryTheory.Functor.map
singleObjApplyIsoOfEq
——
mapBifunctorObjSingleā‚€ObjIso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor
CategoryTheory.Functor.category
mapBifunctor
singleā‚€
mapBifunctorObjSingleā‚€ObjIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
single
CategoryTheory.Functor.map
singleObjApplyIsoOfEq
CategoryTheory.Functor.id
——
mapBifunctorObjSingleā‚€ObjIso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.GradedObject
categoryOfGradedObjects
CategoryTheory.Functor
CategoryTheory.Functor.category
mapBifunctor
singleā‚€
mapBifunctorObjSingleā‚€ObjIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
single
CategoryTheory.Functor.map
singleObjApplyIsoOfEq
——
mapBifunctorRightUnitorCofan_inj šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
Set.Elem
Set.preimage
Set
Set.instSingletonSet
mapObjFun
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
mapBifunctorRightUnitorCofan
Set.instMembership
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
single
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjApplyIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor.flip
—CategoryTheory.Category.comp_id
mapBifunctorRightUnitorCofan_inj_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapObjFun
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
CategoryTheory.Limits.Cocone.pt
Set.Elem
CategoryTheory.Discrete.functor
mapBifunctorRightUnitorCofan
CategoryTheory.Functor.map
single
CategoryTheory.Iso.hom
singleObjApplyIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor.flip
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorRightUnitor_hasMap šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
—CofanMapObjFun.hasMap
mapBifunctorRightUnitor_inv_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.Iso.inv
mapBifunctorMapObj
mapBifunctorRightUnitor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Functor.flip
CategoryTheory.NatTrans.app
single
CategoryTheory.Functor.map
singleObjApplyIso
ιMapBifunctorMapObj
——
mapBifunctorRightUnitor_inv_naturality šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
CategoryTheory.Iso.inv
mapBifunctorRightUnitor
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
—hom_ext
mapBifunctorRightUnitor_inv_apply
CategoryTheory.Category.assoc
ι_mapBifunctorMapMap
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.NatTrans.naturality_assoc
mapBifunctorRightUnitor_inv_naturality_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
CategoryTheory.Iso.inv
mapBifunctorRightUnitor
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorRightUnitor_inv_naturality
mapBifunctorRightUnitor_naturality šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
mapBifunctorRightUnitor
—CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
mapBifunctorRightUnitor_inv_naturality
CategoryTheory.Iso.hom_inv_id_assoc
mapBifunctorRightUnitor_naturality_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
mapBifunctorRightUnitor
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapBifunctorRightUnitor_naturality
mapBifunctor_triangle šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
TriangleIndexData.p₁₂
mapBifunctorMapObj
TriangleIndexData.pā‚‚ā‚ƒ
HasGoodTrifunctor₁₂Obj
TriangleIndexData.ρ₁₂
HasGoodTrifunctorā‚‚ā‚ƒObj
TriangleIndexData.Ļā‚‚ā‚ƒ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.bifunctorComp₁₂
CategoryTheory.bifunctorCompā‚‚ā‚ƒ
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor.map
BifunctorComp₁₂IndexData.I₁₂
BifunctorComp₁₂IndexData.q
BifunctorComp₁₂IndexData.p
BifunctorCompā‚‚ā‚ƒIndexData.Iā‚‚ā‚ƒ
BifunctorCompā‚‚ā‚ƒIndexData.q
BifunctorCompā‚‚ā‚ƒIndexData.p
mapBifunctorAssociator
mapBifunctorMapMap
CategoryTheory.CategoryStruct.id
mapBifunctorLeftUnitor
TriangleIndexData.hā‚ƒ
mapBifunctorRightUnitor
TriangleIndexData.h₁
—TriangleIndexData.hā‚ƒ
TriangleIndexData.h₁
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsIsoMapBifunctorMapMap
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.id
hom_ext
mapBifunctorMapObj_ext
ι_mapBifunctorMapMap_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
ι_mapBifunctorMapMap
TriangleIndexData.r_zero
ιMapBifunctor₁₂BifunctorMapObj_eq_assoc
ι_mapBifunctorAssociator_hom_assoc
ιMapBifunctorBifunctorā‚‚ā‚ƒMapObj_eq_assoc
CategoryTheory.NatTrans.id_app
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.NatTrans.comp_app_assoc
ι_mapBifunctorLeftUnitor_hom_apply
ι_mapBifunctorRightUnitor_hom_apply
CategoryTheory.NatTrans.naturality_app
ι_mapBifunctorLeftUnitor_hom_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
ιMapBifunctorMapObj
CategoryTheory.Iso.hom
mapBifunctorLeftUnitor
single
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
singleObjApplyIso
—CofanMapObjFun.ιMapObj_iso_inv
ι_mapBifunctorLeftUnitor_hom_apply_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
ιMapBifunctorMapObj
CategoryTheory.Iso.hom
mapBifunctorLeftUnitor
CategoryTheory.NatTrans.app
single
CategoryTheory.Functor.map
singleObjApplyIso
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorLeftUnitor_hom_apply
ι_mapBifunctorRightUnitor_hom_apply šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
ιMapBifunctorMapObj
CategoryTheory.Iso.hom
mapBifunctorRightUnitor
single
CategoryTheory.Functor.id
CategoryTheory.Functor.map
singleObjApplyIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor.flip
—CofanMapObjFun.ιMapObj_iso_inv
ι_mapBifunctorRightUnitor_hom_apply_assoc šŸ“–mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
HasMap
CategoryTheory.GradedObject
categoryOfGradedObjects
mapBifunctor
singleā‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mapBifunctorMapObj
ιMapBifunctorMapObj
CategoryTheory.Iso.hom
mapBifunctorRightUnitor
CategoryTheory.Functor.map
single
singleObjApplyIso
CategoryTheory.NatTrans.app
CategoryTheory.Functor.flip
CategoryTheory.Functor.id
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_mapBifunctorRightUnitor_hom_apply

CategoryTheory.GradedObject.TriangleIndexData

Definitions

NameCategoryTheorems
p₁₂ šŸ“–CompOp
2 mathmath: hp₁₂, h₁
pā‚‚ā‚ƒ šŸ“–CompOp
2 mathmath: hā‚ƒ, hpā‚‚ā‚ƒ
ρ₁₂ šŸ“–CompOp—
Ļā‚‚ā‚ƒ šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
hp₁₂ šŸ“–mathematical—p₁₂——
hpā‚‚ā‚ƒ šŸ“–mathematical—pā‚‚ā‚ƒā€”ā€”
h₁ šŸ“–mathematical—p₁₂——
hā‚ƒ šŸ“–mathematical—pā‚‚ā‚ƒā€”ā€”
r_zero šŸ“–ā€”ā€”ā€”ā€”hpā‚‚ā‚ƒ
hā‚ƒ

---

← Back to Index