| Name | Category | Theorems |
base 📖 | CompOp | 68 mathmath: base_eqToHom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, ιNatTrans_app_fiber, transportIso_hom_base, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, grothendieckTypeToCat_unitIso_hom_app_fiber, isoMk_inv_base, comp_base, isoMk_inv_fiber, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, id_fiber, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, comp_fiber, map_map, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, fiber_eqToHom, eqToHom_eq, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCat_inverse_obj_base, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, forget_obj, id_base, toTransport_fiber, pre_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_map, grothendieckTypeToCatFunctor_obj_fst, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, isoMk_hom_base, map_obj_fiber, compAsSmallFunctorEquivalenceFunctor_obj_base, transportIso_inv_base, compAsSmallFunctorEquivalenceFunctor_map_base, transport_base, functorFrom_obj, transportIso_inv_fiber, map_obj, compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_obj, map_obj_base, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv, compAsSmallFunctorEquivalenceInverse_map_fiber, functorFrom_map, transport_fiber, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, map_map_fiber, map_map_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, compAsSmallFunctorEquivalenceInverse_map_base, grothendieckTypeToCatInverse_obj_base, congr, grothendieckTypeToCat_functor_map_coe, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map
|
comp 📖 | CompOp | — |
compAsSmallFunctorEquivalence 📖 | CompOp | 4 mathmath: compAsSmallFunctorEquivalence_functor, compAsSmallFunctorEquivalence_inverse, compAsSmallFunctorEquivalence_unitIso, compAsSmallFunctorEquivalence_counitIso
|
compAsSmallFunctorEquivalenceFunctor 📖 | CompOp | 6 mathmath: compAsSmallFunctorEquivalenceFunctor_map_fiber, compAsSmallFunctorEquivalenceFunctor_obj_fiber, compAsSmallFunctorEquivalence_functor, compAsSmallFunctorEquivalenceFunctor_obj_base, compAsSmallFunctorEquivalenceFunctor_map_base, compAsSmallFunctorEquivalence_counitIso
|
compAsSmallFunctorEquivalenceInverse 📖 | CompOp | 6 mathmath: compAsSmallFunctorEquivalenceInverse_obj_fiber, compAsSmallFunctorEquivalence_inverse, compAsSmallFunctorEquivalenceInverse_obj_base, compAsSmallFunctorEquivalenceInverse_map_fiber, compAsSmallFunctorEquivalenceInverse_map_base, compAsSmallFunctorEquivalence_counitIso
|
fiber 📖 | CompOp | 49 mathmath: CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, ιNatTrans_app_fiber, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, isoMk_inv_fiber, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, id_fiber, comp_fiber, map_map, fiber_eqToHom, eqToHom_eq, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, toTransport_fiber, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, map_obj_fiber, compAsSmallFunctorEquivalenceFunctor_map_base, functorFrom_obj, transportIso_inv_fiber, map_obj, CategoryTheory.CostructuredArrow.grothendieckProj_obj, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv, compAsSmallFunctorEquivalenceInverse_map_fiber, grothendieckTypeToCat_inverse_obj_fiber_as, functorFrom_map, transport_fiber, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, map_map_fiber, map_map_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, compAsSmallFunctorEquivalenceInverse_map_base, pre_obj_fiber, congr, grothendieckTypeToCat_functor_map_coe, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, grothendieckTypeToCatInverse_obj_fiber_as, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map
|
forget 📖 | CompOp | 4 mathmath: functor_comp_forget, forget_obj, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, forget_map
|
functor 📖 | CompOp | — |
functorFrom 📖 | CompOp | 2 mathmath: functorFrom_obj, functorFrom_map
|
grothendieckTypeToCat 📖 | CompOp | 12 mathmath: grothendieckTypeToCat_inverse_map_base, grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCat_inverse_obj_base, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCat_inverse_obj_fiber_as, grothendieckTypeToCat_functor_map_coe, grothendieckTypeToCat_functor_obj_snd
|
grothendieckTypeToCatFunctor 📖 | CompOp | 9 mathmath: grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCatFunctor_obj_snd, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCatFunctor_map_coe, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCatFunctor_obj_fst
|
grothendieckTypeToCatInverse 📖 | CompOp | 9 mathmath: grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCatInverse_obj_base, grothendieckTypeToCatInverse_map_base, grothendieckTypeToCatInverse_obj_fiber_as
|
id 📖 | CompOp | — |
instCategory 📖 | CompOp | 118 mathmath: base_eqToHom, ιCompMap_hom_app_fiber, CategoryTheory.Functor.instHasColimitGrothendieckFunctorCompGrothendieckProj, map_comp_eq, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, pre_comp_map_assoc, ιNatTrans_app_fiber, grothendieckTypeToCat_inverse_map_base, grothendieckTypeToCat_counitIso_inv_app_coe, transportIso_hom_base, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, functor_comp_forget, grothendieckTypeToCat_unitIso_hom_app_fiber, isoMk_inv_base, comp_base, isoMk_inv_fiber, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, id_fiber, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom, CategoryTheory.Limits.fiberwiseColim_obj, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, ιNatTrans_app_base, comp_fiber, map_map, grothendieckTypeToCat_unitIso_inv_app_base, ιCompMap_inv_app_fiber, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, fiber_eqToHom, CategoryTheory.Limits.preservesLimitsOfShape_colim_grothendieck, eqToHom_eq, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCat_inverse_obj_base, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom_assoc, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, map_id_eq, forget_obj, CategoryTheory.instIsFilteredOrEmptyGrothendieckOfαCategoryObjCat, grothendieckTypeToCat_counitIso_hom_app_coe, compAsSmallFunctorEquivalence_functor, id_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, CategoryTheory.Limits.fiberwiseColim_map_app, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, pre_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_map, grothendieckTypeToCatFunctor_obj_fst, compAsSmallFunctorEquivalence_inverse, pre_comp_map, isoMk_hom_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, map_obj_fiber, final_map, compAsSmallFunctorEquivalenceFunctor_obj_base, transportIso_inv_base, compAsSmallFunctorEquivalenceFunctor_map_base, ιCompMap_inv_app_base, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_hom_app, pre_comp, functorFrom_obj, transportIso_inv_fiber, map_obj, compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.Limits.fiberwiseColimCompColimIso_hom_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, CategoryTheory.CostructuredArrow.grothendieckProj_obj, map_obj_base, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, final_pre, compAsSmallFunctorEquivalenceInverse_map_fiber, compAsSmallFunctorEquivalence_unitIso, grothendieckTypeToCat_inverse_obj_fiber_as, CategoryTheory.Limits.fiberwiseColimCompColimIso_inv_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_inv_app, functorFrom_map, CategoryTheory.Limits.hasColimitsOfShape_grothendieck, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, map_map_fiber, map_map_base, ι_obj, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, ιCompMap_hom_app_base, compAsSmallFunctorEquivalenceInverse_map_base, pre_obj_fiber, grothendieckTypeToCatInverse_obj_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, pre_id, grothendieckTypeToCatInverse_map_base, grothendieckTypeToCat_functor_map_coe, CategoryTheory.instIsFilteredGrothendieckOfαCategoryObjCat, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, compAsSmallFunctorEquivalence_counitIso, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, grothendieckTypeToCatInverse_obj_fiber_as, forget_map, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map, faithful_ι
|
instInhabitedHom 📖 | CompOp | — |
isoMk 📖 | CompOp | 4 mathmath: isoMk_inv_base, isoMk_inv_fiber, isoMk_hom_base, isoMk_hom_fiber
|
map 📖 | CompOp | 16 mathmath: ιCompMap_hom_app_fiber, map_comp_eq, pre_comp_map_assoc, functor_comp_forget, map_map, ιCompMap_inv_app_fiber, map_id_eq, pre_comp_map, map_obj_fiber, final_map, ιCompMap_inv_app_base, map_obj, map_obj_base, map_map_fiber, map_map_base, ιCompMap_hom_app_base
|
mapCompIso 📖 | CompOp | — |
mapIdIso 📖 | CompOp | — |
mapWhiskerLeftIsoConjPreMap 📖 | CompOp | — |
mapWhiskerRightAsSmallFunctor 📖 | CompOp | — |
pre 📖 | CompOp | 9 mathmath: pre_comp_map_assoc, pre_map_fiber, pre_obj_base, pre_comp_map, pre_comp, final_pre, pre_obj_fiber, pre_id, pre_map_base
|
preEquivalence 📖 | CompOp | — |
preInv 📖 | CompOp | — |
preNatIso 📖 | CompOp | — |
preUnitIso 📖 | CompOp | — |
toTransport 📖 | CompOp | 2 mathmath: toTransport_fiber, toTransport_base
|
transport 📖 | CompOp | 8 mathmath: transportIso_hom_base, toTransport_fiber, transportIso_inv_base, transport_base, transportIso_inv_fiber, toTransport_base, transport_fiber, transportIso_hom_fiber
|
transportIso 📖 | CompOp | 4 mathmath: transportIso_hom_base, transportIso_inv_base, transportIso_inv_fiber, transportIso_hom_fiber
|
ι 📖 | CompOp | 23 mathmath: ιCompMap_hom_app_fiber, ιNatTrans_app_fiber, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, ιNatTrans_app_base, ιCompMap_inv_app_fiber, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.Limits.fiberwiseColim_map_app, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, ιCompMap_inv_app_base, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_hom_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_inv_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, ι_obj, ιCompMap_hom_app_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, ι_map, faithful_ι
|
ιCompFunctorFrom 📖 | CompOp | — |
ιCompMap 📖 | CompOp | 4 mathmath: ιCompMap_hom_app_fiber, ιCompMap_inv_app_fiber, ιCompMap_inv_app_base, ιCompMap_hom_app_base
|
ιNatTrans 📖 | CompOp | 3 mathmath: CategoryTheory.Limits.fiberwiseColimit_map, ιNatTrans_app_fiber, ιNatTrans_app_base
|