Documentation Verification Report

Grothendieck

📁 Source: Mathlib/CategoryTheory/Grothendieck.lean

Statistics

MetricCount
Definitionsbase, fiber, base, comp, compAsSmallFunctorEquivalence, compAsSmallFunctorEquivalenceFunctor, compAsSmallFunctorEquivalenceInverse, fiber, forget, functor, functorFrom, grothendieckTypeToCat, grothendieckTypeToCatFunctor, grothendieckTypeToCatInverse, id, instCategory, instInhabitedHom, isoMk, map, mapCompIso, mapIdIso, mapWhiskerLeftIsoConjPreMap, mapWhiskerRightAsSmallFunctor, pre, preEquivalence, preInv, preNatIso, preUnitIso, toTransport, transport, transportIso, ι, ιCompFunctorFrom, ιCompMap, ιNatTrans
35
Theoremsbase_eqToHom, compAsSmallFunctorEquivalenceFunctor_map_base, compAsSmallFunctorEquivalenceFunctor_map_fiber, compAsSmallFunctorEquivalenceFunctor_obj_base, compAsSmallFunctorEquivalenceFunctor_obj_fiber, compAsSmallFunctorEquivalenceInverse_map_base, compAsSmallFunctorEquivalenceInverse_map_fiber, compAsSmallFunctorEquivalenceInverse_obj_base, compAsSmallFunctorEquivalenceInverse_obj_fiber, compAsSmallFunctorEquivalence_counitIso, compAsSmallFunctorEquivalence_functor, compAsSmallFunctorEquivalence_inverse, compAsSmallFunctorEquivalence_unitIso, comp_base, comp_fiber, eqToHom_eq, ext, faithful_ι, fiber_eqToHom, forget_map, forget_obj, functorFrom_map, functorFrom_obj, functor_comp_forget, grothendieckTypeToCatFunctor_map_coe, grothendieckTypeToCatFunctor_obj_fst, grothendieckTypeToCatFunctor_obj_snd, grothendieckTypeToCatInverse_map_base, grothendieckTypeToCatInverse_obj_base, grothendieckTypeToCatInverse_obj_fiber_as, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCat_functor_map_coe, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_functor_obj_snd, grothendieckTypeToCat_inverse_map_base, grothendieckTypeToCat_inverse_obj_base, grothendieckTypeToCat_inverse_obj_fiber_as, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_unitIso_inv_app_fiber, id_base, id_fiber, isoMk_hom_base, isoMk_hom_fiber, isoMk_inv_base, isoMk_inv_fiber, map_comp_eq, map_id_eq, map_map, map_map_base, map_map_fiber, map_obj, map_obj_base, map_obj_fiber, pre_comp, pre_comp_map, pre_comp_map_assoc, pre_id, pre_map_base, pre_map_fiber, pre_obj_base, pre_obj_fiber, toTransport_base, toTransport_fiber, transportIso_hom_base, transportIso_hom_fiber, transportIso_inv_base, transportIso_inv_fiber, transport_base, transport_fiber, ιCompMap_hom_app_base, ιCompMap_hom_app_fiber, ιCompMap_inv_app_base, ιCompMap_inv_app_fiber, ιNatTrans_app_base, ιNatTrans_app_fiber, ι_map, ι_obj
80
Total115

CategoryTheory.Grothendieck

Definitions

NameCategoryTheorems
base 📖CompOp
68 mathmath: base_eqToHom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, ιNatTrans_app_fiber, transportIso_hom_base, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, grothendieckTypeToCat_unitIso_hom_app_fiber, isoMk_inv_base, comp_base, isoMk_inv_fiber, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, id_fiber, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, comp_fiber, map_map, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, fiber_eqToHom, eqToHom_eq, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCat_inverse_obj_base, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, forget_obj, id_base, toTransport_fiber, pre_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_map, grothendieckTypeToCatFunctor_obj_fst, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, isoMk_hom_base, map_obj_fiber, compAsSmallFunctorEquivalenceFunctor_obj_base, transportIso_inv_base, compAsSmallFunctorEquivalenceFunctor_map_base, transport_base, functorFrom_obj, transportIso_inv_fiber, map_obj, compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_obj, map_obj_base, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv, compAsSmallFunctorEquivalenceInverse_map_fiber, functorFrom_map, transport_fiber, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, map_map_fiber, map_map_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, compAsSmallFunctorEquivalenceInverse_map_base, grothendieckTypeToCatInverse_obj_base, congr, grothendieckTypeToCat_functor_map_coe, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map
comp 📖CompOp
compAsSmallFunctorEquivalence 📖CompOp
4 mathmath: compAsSmallFunctorEquivalence_functor, compAsSmallFunctorEquivalence_inverse, compAsSmallFunctorEquivalence_unitIso, compAsSmallFunctorEquivalence_counitIso
compAsSmallFunctorEquivalenceFunctor 📖CompOp
6 mathmath: compAsSmallFunctorEquivalenceFunctor_map_fiber, compAsSmallFunctorEquivalenceFunctor_obj_fiber, compAsSmallFunctorEquivalence_functor, compAsSmallFunctorEquivalenceFunctor_obj_base, compAsSmallFunctorEquivalenceFunctor_map_base, compAsSmallFunctorEquivalence_counitIso
compAsSmallFunctorEquivalenceInverse 📖CompOp
6 mathmath: compAsSmallFunctorEquivalenceInverse_obj_fiber, compAsSmallFunctorEquivalence_inverse, compAsSmallFunctorEquivalenceInverse_obj_base, compAsSmallFunctorEquivalenceInverse_map_fiber, compAsSmallFunctorEquivalenceInverse_map_base, compAsSmallFunctorEquivalence_counitIso
fiber 📖CompOp
49 mathmath: CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, ιNatTrans_app_fiber, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, isoMk_inv_fiber, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, id_fiber, comp_fiber, map_map, fiber_eqToHom, eqToHom_eq, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv_assoc, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, toTransport_fiber, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, map_obj_fiber, compAsSmallFunctorEquivalenceFunctor_map_base, functorFrom_obj, transportIso_inv_fiber, map_obj, CategoryTheory.CostructuredArrow.grothendieckProj_obj, CategoryTheory.Limits.ι_colimitFiberwiseColimitIso_inv, compAsSmallFunctorEquivalenceInverse_map_fiber, grothendieckTypeToCat_inverse_obj_fiber_as, functorFrom_map, transport_fiber, CategoryTheory.Limits.coconeOfCoconeFiberwiseColimit_ι_app, map_map_fiber, map_map_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, compAsSmallFunctorEquivalenceInverse_map_base, pre_obj_fiber, congr, grothendieckTypeToCat_functor_map_coe, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, grothendieckTypeToCatInverse_obj_fiber_as, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map
forget 📖CompOp
4 mathmath: functor_comp_forget, forget_obj, CategoryTheory.Limits.natTransIntoForgetCompFiberwiseColimit_app, forget_map
functor 📖CompOp
functorFrom 📖CompOp
2 mathmath: functorFrom_obj, functorFrom_map
grothendieckTypeToCat 📖CompOp
12 mathmath: grothendieckTypeToCat_inverse_map_base, grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCat_inverse_obj_base, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCat_inverse_obj_fiber_as, grothendieckTypeToCat_functor_map_coe, grothendieckTypeToCat_functor_obj_snd
grothendieckTypeToCatFunctor 📖CompOp
9 mathmath: grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCatFunctor_obj_snd, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCatFunctor_map_coe, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCatFunctor_obj_fst
grothendieckTypeToCatInverse 📖CompOp
9 mathmath: grothendieckTypeToCat_counitIso_inv_app_coe, grothendieckTypeToCat_unitIso_hom_app_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, grothendieckTypeToCat_unitIso_inv_app_base, grothendieckTypeToCat_unitIso_hom_app_base, grothendieckTypeToCat_counitIso_hom_app_coe, grothendieckTypeToCatInverse_obj_base, grothendieckTypeToCatInverse_map_base, grothendieckTypeToCatInverse_obj_fiber_as
id 📖CompOp
instCategory 📖CompOp
118 mathmath: base_eqToHom, ιCompMap_hom_app_fiber, CategoryTheory.Functor.instHasColimitGrothendieckFunctorCompGrothendieckProj, map_comp_eq, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, pre_comp_map_assoc, ιNatTrans_app_fiber, grothendieckTypeToCat_inverse_map_base, grothendieckTypeToCat_counitIso_inv_app_coe, transportIso_hom_base, compAsSmallFunctorEquivalenceFunctor_map_fiber, grothendieckTypeToCatFunctor_obj_snd, functor_comp_forget, grothendieckTypeToCat_unitIso_hom_app_fiber, isoMk_inv_base, comp_base, isoMk_inv_fiber, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, id_fiber, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom, CategoryTheory.Limits.fiberwiseColim_obj, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, ιNatTrans_app_base, comp_fiber, map_map, grothendieckTypeToCat_unitIso_inv_app_base, ιCompMap_inv_app_fiber, grothendieckTypeToCat_functor_obj_fst, grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, fiber_eqToHom, CategoryTheory.Limits.preservesLimitsOfShape_colim_grothendieck, eqToHom_eq, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, compAsSmallFunctorEquivalenceFunctor_obj_fiber, grothendieckTypeToCat_inverse_obj_base, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_hom_assoc, grothendieckTypeToCatFunctor_map_coe, compAsSmallFunctorEquivalenceInverse_obj_fiber, pre_map_fiber, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, map_id_eq, forget_obj, CategoryTheory.instIsFilteredOrEmptyGrothendieckOfαCategoryObjCat, grothendieckTypeToCat_counitIso_hom_app_coe, compAsSmallFunctorEquivalence_functor, id_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, CategoryTheory.Limits.fiberwiseColim_map_app, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, pre_obj_base, CategoryTheory.CostructuredArrow.grothendieckProj_map, grothendieckTypeToCatFunctor_obj_fst, compAsSmallFunctorEquivalence_inverse, pre_comp_map, isoMk_hom_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, map_obj_fiber, final_map, compAsSmallFunctorEquivalenceFunctor_obj_base, transportIso_inv_base, compAsSmallFunctorEquivalenceFunctor_map_base, ιCompMap_inv_app_base, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_hom_app, pre_comp, functorFrom_obj, transportIso_inv_fiber, map_obj, compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.Limits.fiberwiseColimCompColimIso_hom_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, CategoryTheory.CostructuredArrow.grothendieckProj_obj, map_obj_base, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, final_pre, compAsSmallFunctorEquivalenceInverse_map_fiber, compAsSmallFunctorEquivalence_unitIso, grothendieckTypeToCat_inverse_obj_fiber_as, CategoryTheory.Limits.fiberwiseColimCompColimIso_inv_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_inv_app, functorFrom_map, CategoryTheory.Limits.hasColimitsOfShape_grothendieck, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, map_map_fiber, map_map_base, ι_obj, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, ιCompMap_hom_app_base, compAsSmallFunctorEquivalenceInverse_map_base, pre_obj_fiber, grothendieckTypeToCatInverse_obj_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, pre_id, grothendieckTypeToCatInverse_map_base, grothendieckTypeToCat_functor_map_coe, CategoryTheory.instIsFilteredGrothendieckOfαCategoryObjCat, isoMk_hom_fiber, grothendieckTypeToCat_functor_obj_snd, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, compAsSmallFunctorEquivalence_counitIso, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, grothendieckTypeToCatInverse_obj_fiber_as, forget_map, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, transportIso_hom_fiber, pre_map_base, ι_map, faithful_ι
instInhabitedHom 📖CompOp
isoMk 📖CompOp
4 mathmath: isoMk_inv_base, isoMk_inv_fiber, isoMk_hom_base, isoMk_hom_fiber
map 📖CompOp
16 mathmath: ιCompMap_hom_app_fiber, map_comp_eq, pre_comp_map_assoc, functor_comp_forget, map_map, ιCompMap_inv_app_fiber, map_id_eq, pre_comp_map, map_obj_fiber, final_map, ιCompMap_inv_app_base, map_obj, map_obj_base, map_map_fiber, map_map_base, ιCompMap_hom_app_base
mapCompIso 📖CompOp
mapIdIso 📖CompOp
mapWhiskerLeftIsoConjPreMap 📖CompOp
mapWhiskerRightAsSmallFunctor 📖CompOp
pre 📖CompOp
9 mathmath: pre_comp_map_assoc, pre_map_fiber, pre_obj_base, pre_comp_map, pre_comp, final_pre, pre_obj_fiber, pre_id, pre_map_base
preEquivalence 📖CompOp
preInv 📖CompOp
preNatIso 📖CompOp
preUnitIso 📖CompOp
toTransport 📖CompOp
2 mathmath: toTransport_fiber, toTransport_base
transport 📖CompOp
8 mathmath: transportIso_hom_base, toTransport_fiber, transportIso_inv_base, transport_base, transportIso_inv_fiber, toTransport_base, transport_fiber, transportIso_hom_fiber
transportIso 📖CompOp
4 mathmath: transportIso_hom_base, transportIso_inv_base, transportIso_inv_fiber, transportIso_hom_fiber
ι 📖CompOp
23 mathmath: ιCompMap_hom_app_fiber, ιNatTrans_app_fiber, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, ιNatTrans_app_base, ιCompMap_inv_app_fiber, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.Limits.fiberwiseColim_map_app, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, ιCompMap_inv_app_base, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_hom_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_inv_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, ι_obj, ιCompMap_hom_app_base, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, ι_map, faithful_ι
ιCompFunctorFrom 📖CompOp
ιCompMap 📖CompOp
4 mathmath: ιCompMap_hom_app_fiber, ιCompMap_inv_app_fiber, ιCompMap_inv_app_base, ιCompMap_hom_app_base
ιNatTrans 📖CompOp
3 mathmath: CategoryTheory.Limits.fiberwiseColimit_map, ιNatTrans_app_fiber, ιNatTrans_app_base

Theorems

NameKindAssumesProvesValidatesDepends On
base_eqToHom 📖mathematicalHom.base
CategoryTheory.eqToHom
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
base
compAsSmallFunctorEquivalenceFunctor_map_base 📖mathematicalHom.base
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
CategoryTheory.Functor.obj
CategoryTheory.AsSmall
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.down
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceFunctor
compAsSmallFunctorEquivalenceFunctor_map_fiber 📖mathematicalHom.fiber
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
CategoryTheory.Functor.obj
CategoryTheory.AsSmall
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.down
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceFunctor
compAsSmallFunctorEquivalenceFunctor_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalenceFunctor
compAsSmallFunctorEquivalenceFunctor_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalenceFunctor
CategoryTheory.AsSmall
CategoryTheory.Bundled.α
CategoryTheory.Category
base
CategoryTheory.Cat.str
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.down
compAsSmallFunctorEquivalenceInverse_map_base 📖mathematicalHom.base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.AsSmall
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.up
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceInverse
compAsSmallFunctorEquivalenceInverse_map_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.AsSmall
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.up
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceInverse
CategoryTheory.Cat.Hom.toFunctor
Hom.base
CategoryTheory.AsSmall.down
compAsSmallFunctorEquivalenceInverse_obj_base 📖mathematicalbase
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceInverse
compAsSmallFunctorEquivalenceInverse_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
compAsSmallFunctorEquivalenceInverse
CategoryTheory.Bundled.α
CategoryTheory.Category
base
CategoryTheory.Cat.str
CategoryTheory.AsSmall
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.AsSmall.up
compAsSmallFunctorEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
compAsSmallFunctorEquivalenceInverse
compAsSmallFunctorEquivalenceFunctor
compAsSmallFunctorEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalence
compAsSmallFunctorEquivalenceFunctor
compAsSmallFunctorEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalence
compAsSmallFunctorEquivalenceInverse
compAsSmallFunctorEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.asSmallFunctor
instCategory
compAsSmallFunctorEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
comp_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
base
comp_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.comp
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
Hom.base
fiber
CategoryTheory.eqToHom
eqToHom_eq 📖mathematicalCategoryTheory.eqToHom
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
base
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
ext 📖Hom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
CategoryTheory.eqToHom
Hom.fiber
CategoryTheory.Category.id_comp
faithful_ι 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
ι
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.instIsIsoEqToHom
fiber_eqToHom 📖mathematicalHom.fiber
CategoryTheory.eqToHom
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
Hom.base
fiber
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
forget
Hom.base
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
forget
base
functorFrom_map 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Grothendieck
instCategory
functorFrom
base
fiber
Hom.base
CategoryTheory.NatTrans.app
Hom.fiber
functorFrom_obj 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Grothendieck
instCategory
functorFrom
base
fiber
functor_comp_forget 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Grothendieck
instCategory
map
forget
grothendieckTypeToCatFunctor_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Discrete.as
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
Hom.base
grothendieckTypeToCatFunctor_obj_fst 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
base
grothendieckTypeToCatFunctor_obj_snd 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
CategoryTheory.Discrete.as
base
fiber
grothendieckTypeToCatInverse_map_base 📖mathematicalHom.base
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
grothendieckTypeToCatInverse
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
grothendieckTypeToCatInverse_obj_base 📖mathematicalbase
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
grothendieckTypeToCatInverse
grothendieckTypeToCatInverse_obj_fiber_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Functor.obj
CategoryTheory.types
fiber
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
grothendieckTypeToCatInverse
grothendieckTypeToCat_counitIso_hom_app_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
grothendieckTypeToCatInverse
grothendieckTypeToCatFunctor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
grothendieckTypeToCat
CategoryTheory.CategoryStruct.id
grothendieckTypeToCat_counitIso_inv_app_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
grothendieckTypeToCatInverse
grothendieckTypeToCatFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
grothendieckTypeToCat
CategoryTheory.CategoryStruct.id
grothendieckTypeToCat_functor_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Discrete.as
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.functor
grothendieckTypeToCat
Hom.base
grothendieckTypeToCat_functor_obj_fst 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.functor
grothendieckTypeToCat
base
grothendieckTypeToCat_functor_obj_snd 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.functor
grothendieckTypeToCat
CategoryTheory.Discrete.as
base
fiber
grothendieckTypeToCat_inverse_map_base 📖mathematicalHom.base
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Equivalence.inverse
grothendieckTypeToCat
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
grothendieckTypeToCat_inverse_obj_base 📖mathematicalbase
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Equivalence.inverse
grothendieckTypeToCat
grothendieckTypeToCat_inverse_obj_fiber_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Functor.obj
CategoryTheory.types
fiber
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Equivalence.inverse
grothendieckTypeToCat
grothendieckTypeToCat_unitIso_hom_app_base 📖mathematicalHom.base
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
grothendieckTypeToCatInverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
grothendieckTypeToCat
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
base
grothendieckTypeToCat_unitIso_hom_app_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
grothendieckTypeToCatInverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
grothendieckTypeToCat
CategoryTheory.eqToHom
CategoryTheory.Discrete
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.of
CategoryTheory.discreteCategory
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Discrete.as
grothendieckTypeToCat_unitIso_inv_app_base 📖mathematicalHom.base
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
grothendieckTypeToCatInverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
grothendieckTypeToCat
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
base
grothendieckTypeToCat_unitIso_inv_app_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.typeToCat
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
grothendieckTypeToCatFunctor
grothendieckTypeToCatInverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
grothendieckTypeToCat
CategoryTheory.eqToHom
CategoryTheory.Discrete
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.of
CategoryTheory.discreteCategory
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Discrete.as
id_base 📖mathematicalHom.base
CategoryTheory.CategoryStruct.id
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
base
id_fiber 📖mathematicalHom.fiber
CategoryTheory.CategoryStruct.id
CategoryTheory.Grothendieck
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.eqToHom
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
Hom.base
fiber
isoMk_hom_base 📖mathematicalHom.base
CategoryTheory.Iso.hom
CategoryTheory.Grothendieck
instCategory
isoMk
base
isoMk_hom_fiber 📖mathematicalHom.fiber
CategoryTheory.Iso.hom
CategoryTheory.Grothendieck
instCategory
isoMk
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
isoMk_inv_base 📖mathematicalHom.base
CategoryTheory.Iso.inv
CategoryTheory.Grothendieck
instCategory
isoMk
base
isoMk_inv_fiber 📖mathematicalHom.fiber
CategoryTheory.Iso.inv
CategoryTheory.Grothendieck
instCategory
isoMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
CategoryTheory.Iso.hom
CategoryTheory.eqToHom
map_comp_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.ext
CategoryTheory.Functor.congr_obj
CategoryTheory.NatTrans.naturality
map_map
CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans
CategoryTheory.eqToHom_app
CategoryTheory.Functor.map_comp
CategoryTheory.eqToHom_map
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_id_eq 📖mathematicalmap
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.ext
CategoryTheory.NatTrans.naturality
map_map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
map
CategoryTheory.Functor.obj
Hom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
fiber
CategoryTheory.NatTrans.app
CategoryTheory.Cat.Hom₂.toNatTrans
CategoryTheory.eqToHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Cat.Hom.instCategory
CategoryTheory.NatTrans.naturality
Hom.fiber
ext
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.congr_obj
map_map_fiber
CategoryTheory.Category.id_comp
CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans
CategoryTheory.eqToHom_app
map_map_base 📖mathematicalHom.base
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
map
map_map_fiber 📖mathematicalHom.fiber
base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom.base
CategoryTheory.eqToHom
CategoryTheory.Functor.congr_obj
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Cat.Hom
CategoryTheory.Functor.congr_obj
CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans
CategoryTheory.eqToHom_app
map_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
map
base
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
fiber
map_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
map
map_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
instCategory
map
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
pre_comp 📖mathematicalpre
CategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre_comp_map 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre
map
CategoryTheory.Functor.whiskerLeft
pre_comp_map_assoc 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Grothendieck
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre
map
CategoryTheory.Functor.whiskerLeft
pre_id 📖mathematicalpre
CategoryTheory.Functor.id
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre_map_base 📖mathematicalHom.base
CategoryTheory.Functor.obj
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
pre
pre_map_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.obj
base
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
fiber
CategoryTheory.Functor.map
CategoryTheory.Grothendieck
instCategory
pre
pre_obj_base 📖mathematicalbase
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre
pre_obj_fiber 📖mathematicalfiber
CategoryTheory.Functor.obj
CategoryTheory.Grothendieck
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
instCategory
pre
toTransport_base 📖mathematicalHom.base
transport
toTransport
toTransport_fiber 📖mathematicalHom.fiber
transport
toTransport
CategoryTheory.CategoryStruct.id
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
transportIso_hom_base 📖mathematicalHom.base
transport
CategoryTheory.Iso.hom
base
CategoryTheory.Grothendieck
instCategory
transportIso
CategoryTheory.Iso.inv
transportIso_hom_fiber 📖mathematicalHom.fiber
transport
CategoryTheory.Iso.hom
base
CategoryTheory.Grothendieck
instCategory
transportIso
CategoryTheory.eqToHom
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
fiber
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
transportIso_inv_base 📖mathematicalHom.base
transport
CategoryTheory.Iso.hom
base
CategoryTheory.Iso.inv
CategoryTheory.Grothendieck
instCategory
transportIso
transportIso_inv_fiber 📖mathematicalHom.fiber
transport
CategoryTheory.Iso.hom
base
CategoryTheory.Iso.inv
CategoryTheory.Grothendieck
instCategory
transportIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
fiber
transport_base 📖mathematicalbase
transport
transport_fiber 📖mathematicalfiber
transport
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
base
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
ιCompMap_hom_app_base 📖mathematicalHom.base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.comp
ι
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ιCompMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ιCompMap_hom_app_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.comp
ι
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
ιCompMap
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
ιCompMap_inv_app_base 📖mathematicalHom.base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
ι
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
ιCompMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ιCompMap_inv_app_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.NatTrans.app
ι
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
ιCompMap
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
ιNatTrans_app_base 📖mathematicalHom.base
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
ι
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
ιNatTrans
ιNatTrans_app_fiber 📖mathematicalHom.fiber
CategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
ι
CategoryTheory.Functor.comp
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
ιNatTrans
CategoryTheory.CategoryStruct.id
base
CategoryTheory.Category.toCategoryStruct
fiber
ι_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
ι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Cat.Hom.toFunctor
fiber
CategoryTheory.eqToHom
ι_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.str
CategoryTheory.Grothendieck
instCategory
ι

CategoryTheory.Grothendieck.Hom

Definitions

NameCategoryTheorems
base 📖CompOp
34 mathmath: CategoryTheory.Grothendieck.base_eqToHom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.Grothendieck.transportIso_hom_base, CategoryTheory.Grothendieck.isoMk_inv_base, CategoryTheory.Grothendieck.comp_base, CategoryTheory.Grothendieck.id_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.Grothendieck.ιNatTrans_app_base, CategoryTheory.Grothendieck.comp_fiber, CategoryTheory.Grothendieck.map_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.Grothendieck.fiber_eqToHom, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_map_coe, CategoryTheory.Grothendieck.id_base, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.Grothendieck.isoMk_hom_base, CategoryTheory.Grothendieck.transportIso_inv_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, CategoryTheory.Grothendieck.ιCompMap_inv_app_base, CategoryTheory.Grothendieck.toTransport_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.Grothendieck.functorFrom_map, CategoryTheory.Grothendieck.map_map_fiber, CategoryTheory.Grothendieck.map_map_base, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Grothendieck.ιCompMap_hom_app_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_map_base, CategoryTheory.Grothendieck.congr, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Grothendieck.forget_map, CategoryTheory.Grothendieck.pre_map_base
fiber 📖CompOp
23 mathmath: CategoryTheory.Grothendieck.ιCompMap_hom_app_fiber, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Grothendieck.ιNatTrans_app_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.Grothendieck.isoMk_inv_fiber, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.Grothendieck.id_fiber, CategoryTheory.Grothendieck.comp_fiber, CategoryTheory.Grothendieck.map_map, CategoryTheory.Grothendieck.ιCompMap_inv_app_fiber, CategoryTheory.Grothendieck.fiber_eqToHom, CategoryTheory.Grothendieck.pre_map_fiber, CategoryTheory.Grothendieck.toTransport_fiber, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.Grothendieck.transportIso_inv_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.Grothendieck.functorFrom_map, CategoryTheory.Grothendieck.map_map_fiber, CategoryTheory.Grothendieck.congr, CategoryTheory.Grothendieck.isoMk_hom_fiber, CategoryTheory.Grothendieck.transportIso_hom_fiber

---

← Back to Index