toCategory 📖 | CompOp | 232 mathmath: reverse_eq_inv, CategoryTheory.Functor.coreComp_hom_app_iso_inv, FundamentalGroupoid.eqToHom_eq, FundamentalGroupoid.map_comp, CategoryTheory.Core.forgetFunctorToCore_map_app, invEquivalence_inverse_map, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_hom_iso, CategoryTheory.Iso.core_inv_app_iso_hom, FundamentalGroupoid.conj_eqToHom_assoc, ContinuousMap.Homotopy.apply_zero_path, CategoryTheory.Core.isoMk_hom_iso, CategoryTheory.Equivalence.core_inverse_map_iso_hom, CategoryTheory.Grpd.piIsoPi_hom_π, CategoryTheory.FreeGroupoid.map_comp_lift, CategoryTheory.Subgroupoid.full_arrow_eq_iff, CategoryTheory.Functor.closedIhom_obj_map, CategoryTheory.FreeGroupoid.lift_comp, ContinuousMap.Homotopy.evalAt_eq, CategoryTheory.Subgroupoid.inclusion_inj_on_objects, FundamentalGroupoid.map_map, CategoryTheory.FreeGroupoid.functorEquiv_apply, CategoryTheory.Functor.coreId_hom_app_iso_hom, CategoryTheory.Subgroupoid.le_iff, CategoryTheory.Grpd.id_to_functor, CategoryTheory.Bicategory.Pith.leftUnitor_inv_iso_hom, CategoryTheory.nonempty_hom_of_preconnected_groupoid, CategoryTheory.FreeGroupoid.mapComp_hom_app, CategoryTheory.Subgroupoid.inclusion_refl, vertexGroup.inv_eq_inv, CategoryTheory.Equivalence.core_unitIso_hom_app_iso_inv, CategoryTheory.Bicategory.Pith.comp₂_iso_hom_assoc, ContinuousMap.Homotopy.heq_path_of_eq_image, invFunctor_map, CategoryTheory.coreCategory_id_iso_inv, CategoryTheory.FreeGroupoid.mapId_hom_app, isThin_iff, ContinuousMap.Homotopy.eq_path_of_eq_image, CategoryTheory.Functor.coreComp_hom_app_iso_hom, CategoryTheory.Subgroupoid.IsWide.eqToHom_mem, IsFreeGroupoid.SpanningTree.endIsFree, CategoryTheory.Functor.core_obj_of, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_map, CategoryTheory.FreeGroupoid.lift_map_homMk, CategoryTheory.Core.forgetFunctorToCore_obj_obj, CategoryTheory.Functor.coreId_inv_app_iso_inv, CategoryTheory.FreeGroupoid.liftNatIso_hom_app, FundamentalGroupoidFunctor.prodToProdTop_obj, CategoryTheory.FreeGroupoid.mapCompLift_inv_app, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_inv, CategoryTheory.coreFunctor_obj_map_iso_inv, CategoryTheory.Bicategory.Pith.id₂_iso_inv, CategoryTheory.FreeGroupoid.lift_obj_mk, CategoryTheory.Core.functorToCore_comp_right, vertexGroup_inv, FundamentalGroupoid.instSubsingletonHomPUnit, CategoryTheory.Subgroupoid.coe_comp_coe, FundamentalGroupoidFunctor.piToPiTop_map, CategoryTheory.Functor.ihom_ev_app, CategoryTheory.Subgroupoid.mem_discrete_iff, CategoryTheory.Functor.coreId_inv_app_iso_hom, CategoryTheory.FreeGroupoid.map_id, ContinuousMap.Homotopy.apply_one_path, CategoryTheory.Iso.coreId, CategoryTheory.Iso.coreLeftUnitor, CategoryTheory.coreCategory_comp_iso_inv, simply_connected_def, CategoryTheory.coreFunctor_obj_obj_of, invEquivalence_inverse_obj, FundamentalGroupoidFunctor.projLeft_map, Quiver.FreeGroupoid.lift_spec, CategoryTheory.Bicategory.Pith.rightUnitor_hom_iso, CategoryTheory.Functor.ihom_map, CategoryTheory.FreeGroupoid.map_map_homMk, CategoryTheory.Subgroupoid.IsWide.wide, CategoryTheory.Subgroupoid.isThin_iff, FundamentalGroupoid.comp_eq, IsFreeGroupoid.SpanningTree.loopOfHom_eq_id, CategoryTheory.Subgroupoid.IsNormal.generatedNormal_le, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, vertexGroup_one, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_inv, CategoryTheory.Iso.coreAssociator, isoEquivHom_apply, invEquivalence_functor_map, isoEquivHom_symm_apply_hom, IsFreeGroupoid.ext_functor_iff, invEquiv_apply, CategoryTheory.Subgroupoid.hom.faithful, CategoryTheory.Subgroupoid.mem_ker_iff, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_inv, CategoryTheory.Functor.coreCompInclusionIso_hom_app, CategoryTheory.Bicategory.Pith.associator_hom_iso, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, inv_comp, SimplyConnectedSpace.equiv_unit, CategoryTheory.Subgroupoid.IsWide.id_mem, CategoryTheory.Functor.mapVertexGroup_apply, vertexGroupIsomOfMap_apply, IsFreeGroupoid.SpanningTree.functorOfMonoidHom_obj, CategoryTheory.coreCategory_comp_iso, CategoryTheory.Bicategory.Pith.id₂_iso_hom, CategoryTheory.Grpd.freeForgetAdjunction_counit_app, CategoryTheory.FreeGroupoid.mapComp_inv_app, CategoryTheory.Functor.core_comp_inclusion, CategoryTheory.Core.functorToCore_map_iso_hom, CategoryTheory.Functor.closedUnit_app_app, CategoryTheory.coreCategory_id_iso_hom, CategoryTheory.FreeGroupoid.mapId_inv_app, CategoryTheory.Functor.coreCompInclusionIso_inv_app, CategoryTheory.FreeGroupoid.liftNatIso_inv_app, CategoryTheory.Subgroupoid.mem_sInf, CategoryTheory.Functor.ihom_coev_app, CategoryTheory.Equivalence.core_functor_obj_of, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, CategoryTheory.FreeGroupoid.lift_id_comp_of, FundamentalGroupoid.map_eq, CategoryTheory.Equivalence.core_functor_map_iso_inv, CategoryTheory.Grpd.id_eq_id, CategoryTheory.Iso.core_hom_app_iso_inv, CategoryTheory.Equivalence.core_counitIso_hom_app_iso_hom, CategoryTheory.Equivalence.core_inverse_map_iso_inv, CategoryTheory.Quotient.inv_mk, vertexGroupIsomOfMap_symm_apply, CategoryTheory.Functor.coreId_hom_app_iso_inv, CategoryTheory.coreFunctor_map_app_iso_inv, CategoryTheory.Functor.closedIhom_obj_obj, IsCoveringMap.monodromyFunctor_obj, isIsomorphic_iff_nonempty_hom, CategoryTheory.Functor.closedIhom_map_app, CategoryTheory.Equivalence.core_inverse_obj_of, CategoryTheory.Subgroupoid.IsNormal.conjugation_bij, CategoryTheory.Subgroupoid.comap_comp, FundamentalGroupoid.map_id, simplyConnectedSpace_iff, CategoryTheory.functorMapReverse, CategoryTheory.Bicategory.Pith.associator_inv_iso_inv, CategoryTheory.Subgroupoid.coe_inv_coe', CategoryTheory.Iso.coreRightUnitor, CategoryTheory.instIsGroupoid, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, CategoryTheory.Subgroupoid.IsNormal.vertexSubgroup, invEquiv_symm_apply, CategoryTheory.Core.isoMk_inv_iso, invEquivalence_functor_obj, FundamentalGroupoidFunctor.piToPiTop_obj_as, CategoryTheory.Equivalence.core_counitIso_hom_app_iso_inv, invEquivalence_counitIso, CategoryTheory.FreeGroupoid.of_obj_bijective, CategoryTheory.coreFunctor_map_app_iso_hom, CategoryTheory.Bicategory.Pith.comp₂_iso_hom, FundamentalGroupoidFunctor.piIso_inv, CategoryTheory.Subgroupoid.coe_inv_coe, CategoryTheory.Equivalence.core_unitIso_hom_app_iso_hom, CategoryTheory.FreeGroupoid.map_obj_mk, CategoryTheory.FreeGroupoid.functorEquiv_symm_apply, FundamentalGroupoidFunctor.prodIso_inv, CategoryTheory.Subgroupoid.inv_mem_iff, FundamentalGroupoid.map_obj_as, IsFreeGroupoid.unique_lift, IsFreeGroupoid.endIsFreeOfConnectedFree, CategoryTheory.Iso.core_inv_app_iso_inv, CategoryTheory.Subgroupoid.mem_full_iff, FundamentalGroupoidFunctor.projRight_map, CategoryTheory.Core.inclusion_obj, CategoryTheory.Grpd.comp_eq_comp, CategoryTheory.Subgroupoid.mem_iff, IsCoveringMap.monodromyFunctor_map, FundamentalGroupoid.conj_eqToHom, CategoryTheory.Bicategory.Pith.associator_inv_iso_hom, CategoryTheory.FreeGroupoid.instIsLocalizationOfTopMorphismProperty, isoEquivHom_symm_apply_inv, CategoryTheory.FreeGroupoid.of_comp_map, CategoryTheory.Subgroupoid.subset_generated, CategoryTheory.coreCategory_comp_iso_hom, CategoryTheory.Functor.core_map_iso_hom, CategoryTheory.Functor.core_map_iso_inv, CategoryTheory.Core.inclusion_comp_functorToCore, CategoryTheory.Functor.closedCounit_app_app, CategoryTheory.FreeGroupoid.lift_spec, CategoryTheory.Bicategory.Pith.leftUnitor_hom_iso, CategoryTheory.Equivalence.core_counitIso_inv_app_iso_hom, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_hom, CategoryTheory.Bicategory.Pith.comp₂_iso_inv_assoc, CategoryTheory.Iso.coreComp, CategoryTheory.Core.forgetFunctorToCore_obj_map, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_hom, CategoryTheory.Subgroupoid.mem_top, CategoryTheory.Subgroupoid.inclusion_trans, CategoryTheory.Functor.monoidalClosed_closed_adj, CategoryTheory.Equivalence.core_functor_map_iso_hom, IsFreeGroupoid.SpanningTree.treeHom_root, CategoryTheory.Subgroupoid.hom.inj_on_objects, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, CategoryTheory.Iso.core_hom_app_iso_hom, CategoryTheory.IsIso.of_groupoid, CategoryTheory.Core.instFaithfulInclusion, invEquivalence_unitIso, CategoryTheory.Subgroupoid.id_mem_of_nonempty_isotropy, CategoryTheory.Core.functorToCore_inclusion, FundamentalGroupoid.id_eq_path_refl, CategoryTheory.Iso.coreWhiskerRight, CategoryTheory.Bicategory.Pith.comp₂_iso_inv, CategoryTheory.Equivalence.core_unitIso_inv_app_iso_hom, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, CategoryTheory.Subgroupoid.ker_comp, CategoryTheory.Grpd.hom_to_functor, CategoryTheory.Subgroupoid.inclusion_faithful, CategoryTheory.Subgroupoid.mem_sInf_arrows, CategoryTheory.FreeGroupoid.mapCompLift_hom_app, FundamentalGroupoidFunctor.prodToProdTop_map, CategoryTheory.Core.inclusion_map, inv_eq_inv, CategoryTheory.Subgroupoid.inclusion_comp_embedding, FundamentalGroupoidFunctor.proj_map, CategoryTheory.Functor.coreComp_inv_app_iso_hom, CategoryTheory.Equivalence.core_unitIso_inv_app_iso_inv, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_hom, CategoryTheory.coreFunctor_obj_map_iso_hom, CategoryTheory.Functor.coreComp_inv_app_iso_inv, vertexGroup_mul, CategoryTheory.Core.functorToCore_comp_left, CategoryTheory.Equivalence.core_counitIso_inv_app_iso_inv, CategoryTheory.Core.functorToCore_obj_of, comp_inv, CategoryTheory.Iso.coreWhiskerLeft, CategoryTheory.Core.functorToCore_map_iso_inv, ContinuousMap.Homotopy.hcast_def, invFunctor_obj, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_hom_iso, CategoryTheory.FreeGroupoid.map_comp, ContinuousMap.Homotopy.eq_diag_path, FundamentalGroupoid.punitEquivDiscretePUnit_functor
|