Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Groupoid/Grpd/Basic.lean

Statistics

MetricCount
Definitionscategory, forgetToCat, instCoeSortType, instGroupoidαCategoryObjCatForgetToCat, instInhabited, objects, of, piIsoPi, piLimitFan, piLimitFanIsLimit, str'
11
Theoremscoe_of, comp_eq_comp, forgetToCat_faithful, forgetToCat_full, has_pi, hom_to_functor, id_eq_id, id_to_functor, piIsoPi_hom_π
9
Total20

CategoryTheory.Grpd

Definitions

NameCategoryTheorems
category 📖CompOp
35 mathmath: forgetToCat_full, FundamentalGroupoidFunctor.piIso_hom, ContinuousMap.Homotopy.apply_zero_path, piIsoPi_hom_π, free_obj, free_map, ContinuousMap.Homotopy.evalAt_eq, id_to_functor, ContinuousMap.Homotopy.heq_path_of_eq_image, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.prodIso_hom, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone, freeForgetAdjunction_homEquiv_symm_apply, forgetToCat_faithful, has_pi, freeForgetAdjunction_counit_app, FundamentalGroupoid.map_eq, id_eq_id, FundamentalGroupoidFunctor.preservesProduct, freeForgetAdjunction_homEquiv_apply, FundamentalGroupoidFunctor.piToPiTop_obj_as, FundamentalGroupoidFunctor.piIso_inv, FundamentalGroupoidFunctor.prodIso_inv, FundamentalGroupoidFunctor.projRight_map, comp_eq_comp, freeForgetAdjunction_unit_app, hom_to_functor, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, ContinuousMap.Homotopy.eq_diag_path
forgetToCat 📖CompOp
6 mathmath: forgetToCat_full, freeForgetAdjunction_homEquiv_symm_apply, forgetToCat_faithful, freeForgetAdjunction_counit_app, freeForgetAdjunction_homEquiv_apply, freeForgetAdjunction_unit_app
instCoeSortType 📖CompOp
instGroupoidαCategoryObjCatForgetToCat 📖CompOp
instInhabited 📖CompOp
objects 📖CompOp
of 📖CompOp
9 mathmath: FundamentalGroupoidFunctor.piIso_hom, piIsoPi_hom_π, FundamentalGroupoidFunctor.prodIso_hom, freeForgetAdjunction_homEquiv_symm_apply, freeForgetAdjunction_counit_app, coe_of, freeForgetAdjunction_homEquiv_apply, FundamentalGroupoidFunctor.piIso_inv, FundamentalGroupoidFunctor.prodIso_inv
piIsoPi 📖CompOp
1 mathmath: piIsoPi_hom_π
piLimitFan 📖CompOp
1 mathmath: FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone
piLimitFanIsLimit 📖CompOp
str' 📖CompOp
23 mathmath: FundamentalGroupoidFunctor.piIso_hom, ContinuousMap.Homotopy.apply_zero_path, piIsoPi_hom_π, ContinuousMap.Homotopy.evalAt_eq, id_to_functor, ContinuousMap.Homotopy.heq_path_of_eq_image, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.prodIso_hom, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, FundamentalGroupoid.map_eq, id_eq_id, FundamentalGroupoidFunctor.piToPiTop_obj_as, FundamentalGroupoidFunctor.piIso_inv, FundamentalGroupoidFunctor.prodIso_inv, FundamentalGroupoidFunctor.projRight_map, comp_eq_comp, hom_to_functor, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, ContinuousMap.Homotopy.eq_diag_path

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of 📖mathematicalCategoryTheory.Bundled.α
CategoryTheory.Groupoid
of
comp_eq_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Grpd
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Functor.comp
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Groupoid.toCategory
str'
forgetToCat_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Grpd
category
CategoryTheory.Cat
CategoryTheory.Cat.category
forgetToCat
forgetToCat_full 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Grpd
category
CategoryTheory.Cat
CategoryTheory.Cat.category
forgetToCat
has_pi 📖mathematicalCategoryTheory.Limits.HasProducts
CategoryTheory.Grpd
category
CategoryTheory.Limits.hasProducts_of_limit_fans
hom_to_functor 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Grpd
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Functor.comp
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Groupoid.toCategory
str'
comp_eq_comp
id_eq_id 📖mathematicalCategoryTheory.CategoryStruct.id
CategoryTheory.Grpd
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Functor.id
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Groupoid.toCategory
str'
id_to_functor 📖mathematicalCategoryTheory.Functor.id
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Groupoid.toCategory
str'
CategoryTheory.CategoryStruct.id
CategoryTheory.Grpd
CategoryTheory.Category.toCategoryStruct
category
piIsoPi_hom_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Grpd
CategoryTheory.Category.toCategoryStruct
category
of
CategoryTheory.groupoidPi
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
str'
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
has_pi
CategoryTheory.Discrete.functor
CategoryTheory.Iso.hom
piIsoPi
CategoryTheory.Limits.Pi.π
CategoryTheory.Pi.eval
CategoryTheory.Groupoid.toCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
has_pi
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp

---

← Back to Index